【题目】如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点的坐标为_______.
【答案】(2,2)
【解析】
根据中心对称的性质找出部分Pn的坐标,根据坐标的变化找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(-2,2),P6n+3(0,-2),P6n+4(2,2),P6n+5(-2,0)(n为自然数)”,依此规律即可得出结论.
观察,发现规律:P0(0,0),P1(2,0),P2(-2,2),P3(0,-2),P4(2,2),P5(-2,0),P6(0,0),P7(2,0),…,
∴P6n(0,0),P6n+1(2,0),P6n+2(-2,2),P6n+3(0,-2),P6n+4(2,2),P6n+5(-2,0)(n为自然数).
∵2020=6×336+4,
∴P2020(2,2).
故答案为:(2,2).
科目:初中数学 来源: 题型:
【题目】直线y=m是平行于X轴的直线,将抛物线y=-x2-4x在直线y=m上侧的部分沿直线 y=m翻折,翻折后的部分与没有翻折的部分组成新的函数图像,若新的函数图像刚好与 直线y=-x有3个交点,则满足条件的m 的值为_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=6,点 P 从点 O出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.
(1)求点 B 的坐标;
(2)设点 P 的运动时间为点 t 秒,△BDP 的面积为 S,求 S 与 t 的函数关系式;
(3)当点 P 与点 D 重合时,连接 BP,点 E 在线段 AB 上,连接 PE,当∠BPE=2∠OBP 时, 求点 E 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校对某班学生“五一”小长假期间的度假情况进行调查,并根据收集的数据绘制了两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:
(1)求出该班学生的总人数;
(2)补全频数分布直方图;
(3)求出扇形统计图中∠α的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=4,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,直线a为对称轴,A和C都在对称轴上.
(1)△ABC以直线a为对称轴作△AB1C;
(2)若∠BAC=30°,则∠BAB1=______°;
(3)求△ABB1的面积等于______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦前夕,湖州吴兴某工艺厂设计了一款成本10元/件的工艺品投放市场试销.试销发现,每天销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数:y=-10x+700. (利润=销售总价-成本总价)
⑴ 如果该厂想要每天获得5000元的利润,那么销售单价应定为多少元/件?
⑵ 当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?
⑶ 湖州市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、 BE和一段水平平台DE构成.已知天桥高度BC≈4.8米,引桥水平跨度AC=8米.
(1)求水平平台DE的长度;
(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.
(参考:sin37°=0.60,cos37°=0.80,tan37°=0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某风景区集体门票的收费标准是30人以内(含30人),每人25元;超过30人,超过部分每人10元.
(1)写出应收门票费(元)与游览人数(人)之间的函数关系式;
(2)利用(1)中的函数关系式计算,某班54人去该风景区旅游时,为购门票共花了多少元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com