【题目】如图,AB是⊙O的直径,C、D是⊙O上的两点,且OD∥BC,OD与AC交于点E,连接AD.
(1)求证:AE=CE;
(2)若∠B=60°,求∠CAD的度数;
(3)若AC=4,BC=3,求DE的长.
【答案】(1)证明见解析;(2)30°;(3)1.
【解析】
(1)由相似三角形的判定与性质,线段和差证明得AE=CE;
(2)由圆周角定理,平行线性质,等腰三角形的判定与性质,角的和差求出∠CAD的度数为30°;
(3)由勾股定理,相似三角形的性质,线段的和差,等量代换求出DE的长为1.
(1)如图所示:
∵OD∥BC,
∴△AOE∽△ABC,
∴,
又∵AB是⊙O的直径,
∴AB=2AO,
∴,
又∵AC=AE+EC,
∴AE=EC;
(2)∵AB是⊙O的直径,
∴∠ACD=90°,
又∵OD∥BC,
∴∠B=∠ACE,∠ACD=∠AED,
又∴∠B=60°,
∴∠AOE=60°,∠AEO=90°,
又∵∠EAO+∠AOE=90°,
∴∠EAO=30°,
又∵AO=DO,
∴∠OAD=60°,
又∵∠OAD=∠OAE+∠CAD,
∴∠CAD=60°﹣30°=30°;
(3)在Rt△ACB中,由勾股定理得:
==5,
∴OA=,
∴OD=,
又∵,BC=3,
∴OE=,
又∵OD=OE+DE,
∴DE==1.
科目:初中数学 来源: 题型:
【题目】如图,已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).
(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD,使新图与原图的相似比为2:1;
(2)分别写出A,B的对应点C、D的坐标;
(3)求△OCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.
(1)求证:BD=CD;
(2)若圆O的半径为3,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为,△AMB的面积为S.求S关于的函数关系式,并求出S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣+bx+c经过A,B两点.
(1)求抛物线的解析式;
(2)点P在抛物线上,点Q在直线AB上,当P,Q关于原点O成中心对称时,求点Q的坐标;
(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.
(1)若OA=8,求k的值;
(2)若CB=BD,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.“明天降雨的概率为”,表示明天有半天都在降雨
B.“抛一枚硬币,正面朝上的概率为”,表示每抛掷两次就有一次正面朝上
C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”,表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的概率稳定在 附近
D.某种彩票的中奖概率为,买1000张这种彩票一定有一张中奖
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com