精英家教网 > 初中数学 > 题目详情
6.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).

(1)这次调查中,一共调查了200名学生;
(2)请补全两幅统计图;
(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.

分析 (1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.

解答 解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
故答案为:200;

(2)B占的百分比为:1-20%-30%-15%=35%,
C的人数为:200×30%=60(名);
如图:


(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;
画树状图得:

∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,
∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:$\frac{6}{12}$=$\frac{1}{2}$.

点评 此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,直线AB,CD被直线GH所截,且∠AEG=∠CFG,EM,FN分别平分∠AEG和∠CFG.试说明EM∥FN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求$\frac{AP}{PD}$的值.
小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
请回答:$\frac{AP}{PD}$的值为$\frac{3}{2}$.
参考小昊思考问题的方法,解决问题:
如图 3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.
(1)求$\frac{AP}{PD}$的值;
(2)若CD=2,则BP=6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,矩形ABCD的一边CD在x轴上,顶点A、B分别落在双曲线y=$\frac{1}{x}$(x>0)、y=$\frac{3}{x}$(x>0)上,边BC交双曲线y=$\frac{1}{x}$(x>0)于点E,连接AE,则△ABE的面积为$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,点A是反比例函数y=$\frac{k}{x}$图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=-4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在正方形网格中,△ABC的位置如图所示,则sin∠BAC的值为(  )
A.$\frac{3}{5}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,小明将一根长为1.4米的竹条截为两段,并互相垂直固定,作为风筝的龙骨,制作成了一个面积为0.24米2的风筝.请你计算一下将竹条截成长度分别为多少的两段?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(1)求证:AD+MC=DE+BM;
(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.
(3)图1中,若正方形的边长是2,求四边形AMCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在Rt△ABC中,∠ACB=90°,AC=$6\sqrt{3}$cm,BC=6cm,经过A,B的直线l以1cm/秒的速度向下作匀速平移运动,交BC于点B′,交CD于点 D′,与此同时,点P从点B′出发,在直线l上以1cm/秒的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.
(1)你求出的AB的长是12cm;
(2)过点C作CD⊥AB于点D,t为何值时,点P移动到CD上?
(3)t为何值时,以点P为圆心、1cm为半径的圆与直线CD相切?
(4)以点P为圆心、1cm为半径的⊙P与CD所在的直线相交时,是否存在点P与两个交点构成的三角形是等边三角形?若存在,直接写出t的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案