精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,EAC边上的一点,且AE=AB∠BAC=2∠CBE,以AB为直径作⊙OAC于点D,交BE于点F

1)求证:BC⊙O的切线;

2)若AB=8BC=6,求DE的长.

【答案】(1)证明过程见解析;(21.6

【解析】试题分析:(1)由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;

2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.

试题解析:(1∵AE=AB

∴△ABE是等腰三角形,

∴∠ABE=180°﹣∠BAC==90°﹣∠BAC

∵∠BAC=2∠CBE

∴∠CBE=∠BAC

∴∠ABC=∠ABE+∠CBE=90°﹣∠BAC+∠BAC=90°

AB⊥BC

∴BC⊙O的切线;

2)连接BD

∵AB⊙O的直径,

∴∠ADB=90°

∵∠ABC=90°

∴∠ADB=∠ABC

∵∠A=∠A

∴△ABD∽△ACB

Rt△ABC中,AB=8BC=6

∴AC==10

解得:AD=6.4

∵AE=AB=8

∴DE=AE﹣AD=8﹣6.4=1.6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ab是任意两个不等实数,我们规定:满足不等式axb的实数x的所有取值的全体叫做闭区间,表示为[ab].对于一个函数,如果它的自变量x与函数值y满足当myn,我们就称此函数是闭区间[mn]上的“闭函数”.

1)反比例函数y=是闭区间[12019]上的“闭函数”吗?请判断并说明理由.

2)若一次函数y=kx+b(k0)是闭间[mn]上的“闭函数”,求此函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.

(1)填空:b=   c=   

(2)在点P,Q运动过程中,APQ可能是直角三角形吗?请说明理由;

(3)在x轴下方,该二次函数的图象上是否存在点M,使PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;

(4)如图,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB4cm,点EF同时从C点出发,以1cm/s的速度分别沿CBBACDDA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)t(s)的函数关系可用图象表示为( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 是等边三角形,延长到点,延长到点,使,连接,延长

1)求证:

2)求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点PA点开始沿AB边向点B1厘米/秒的速度移动(到达点B即停止运动),点QB点开始沿BC边向点C2厘米/秒的速度移动(到达点C即停止运动).

(1)如果P,Q分别从A,B两点同时出发,经过几秒钟,△PBQ的面积等于△ABC面积的三分之一?

(2)如果P,Q两点分别从A,B两点同时出发,几秒钟后,P,Q相距6厘米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.

解:原方程可变形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.我们称晓东这种解法为平均数法”.

(1)下面是晓东用平均数法解方程(x+2)(x+6)=5时写的解题过程.

解:原方程可变形,得

[(x+□)﹣〇][(x+□)+〇]=5.

(x+□)2﹣〇2=5,

(x+□)2=5+〇2

直接开平方并整理,得x1=,x2=¤.

上述过程中的“□”,“〇”,“”,“¤”表示的数分别为            

(2)请用平均数法解方程:(x﹣3)(x+1)=5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习了三角形全等的判定方法(即SSSSASASAAAS)和直角三角形全等的判定方法(即HL)后,我们继续对两个三角形满足两边和其中一边的对角对应相等的情形进行研究.

(初步思考)

我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DFBC=EF,∠B=E,然后对∠B进行分类,可以分为B是直角、钝角、锐角三种情况进行探究.

(深入探究)

第一种情况:当∠B为锐角时,△ABC和△DEF不一定全等.

1)如图,在△ABC和△DEF中,AC=DFBC=EF,∠B=E,且∠B,∠E都是锐角,请你用尺规在图中确定点D,使△DEF和△ABC不全等(不写作法,保留作图痕迹);

第二种情况:当∠B为直角时,△ABC≌△DEF

2)如图,在△ABC和△DEF中,AC=DFBC=EF,∠B=E=90°,根据____,可以知道RtABCRtDEF

第三种情况:当∠B为钝角时,△ABC≌△DEF

3)如图,在△ABC和△DEF中,AC=DFBC=EF,∠B=E,且∠B,∠E都是钝角,求证:△ABC≌△DEF

查看答案和解析>>

同步练习册答案