精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,AB4cm,点EF同时从C点出发,以1cm/s的速度分别沿CBBACDDA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)t(s)的函数关系可用图象表示为( )

A. B.

C. D.

【答案】D

【解析】

试题分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣SADF﹣SABE﹣SCEF可得S=﹣t2+4t,配成顶点式得S=﹣t﹣42+8,此时抛物线的开口向下,顶点坐标为(48);当4t≤8时,直接根据三角形面积公式得到S=8﹣t2=t﹣82,此时抛物线开口向上,顶点坐标为(80),于是根据这些特征可对四个选项进行判断.

解:当0≤t≤4时,S=S正方形ABCD﹣SADF﹣SABE﹣SCEF

=44﹣44﹣t44﹣ttt

=﹣t2+4t

=﹣t﹣42+8

4t≤8时,S=8﹣t2=t﹣82

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:

(1)在这次研究中,一共调查了   学生,并请补全折线统计图;

(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200 m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200 m,缆车由点B到点D的行驶路线与水平夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(-4,m)两点.

(1)求k1,k2,b的值;

(2)求△AOB的面积;

(3)请直接写出不等式x+b的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,垂足分别为,求的长.

1)请你也独立完成这道题:

2)待同学们完成这道题后,张老师又出示了一道题:

在课本原题其它条件不变的前提下,将所在直线旋转到的外部(如图2),请你猜想三者之间的数量关系,直接写出结论:_______.(不需证明)

3)如图3,将(1)中的条件改为:在中,三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=,其中为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,EAC边上的一点,且AE=AB∠BAC=2∠CBE,以AB为直径作⊙OAC于点D,交BE于点F

1)求证:BC⊙O的切线;

2)若AB=8BC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).

(1)求直线BC与抛物线的解析式;

(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,当 MN的值最大时,求△BMN的周长.

(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=4S2,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ADBC,BE=CE,ABC=2C,BF为B的平分线.求证:AB=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC内接于⊙O,AB=AC=4,BC=8,则⊙O的半径为___________.

查看答案和解析>>

同步练习册答案