17£®Èçͼ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏóÓëÒ»´Îº¯Êýy=-$\frac{1}{2}$xµÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÈôBµãµÄºá×ø±êΪ2£¬µãPÊǵڶþÏóÏÞÄÚ·´±ÈÀýº¯ÊýͼÏóÉϵ͝µã£¬ÇÒÔÚÖ±ÏßABµÄÉÏ·½£®
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ½âÕÛʽ£®
£¨2£©ÈôµãPµÄºá×ø±êΪ-1£¬Åжϡ÷PABµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©ÈôÖ±ÏßPA¡¢PBÓëxÖá·Ö±ð½»ÓÚµãM¡¢N£¬ÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷PMNΪµÈ±ßÈý½ÇÐΣ¬²¢Çó³ö´ËʱµÄµãM¡¢NµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉBµãµÄºá×ø±êΪ2£¬ÇÒÔÚÔÚÒ»´Îº¯Êýy=-$\frac{1}{2}$xµÄͼÏóÉÏ£¬¼´¿ÉÇóµÃµãBµÄ×ø±ê£¬È»ºó´úÈë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¬¼´¿ÉÇóµÃ´ð°¸£»
£¨2£©ÓɵãPµÄºá×ø±êΪ-1£¬¿ÉÇóµÃµãPµÄ×ø±ê£¬ÓÖÓÉAÓëB¹ØÓÚÔ­µã¶Ô³Æ£¬¿ÉÇóµÃµãAµÄ×ø±ê£¬È»ºóÀûÓù´¹É¶¨ÀíµÄÄæ¶¨Àí£¬Åж¨¡÷PABÊÇÖ±½ÇÈý½ÇÐΣ»
£¨3£©Ê×ÏÈÉèP£¨m£¬-$\frac{2}{m}$£©£¬Ö±ÏßPAµÄ½âÎöʽΪ£ºy=ax+b£¬ÉèÖ±ÏßPBµÄ½âÎöʽΪy=px+q£¬È»ºóÀûÓôý¶¨ÏµÊý·¨£¬ÇóµÃÖ±ÏßPAÓëPBµÄ½âÎöʽ£¬Ôò¿ÉÇóµÃµãM£¬NµÄ×ø±ê£¬¼´¿ÉÇóµÃMNµÄ³¤£¬ÔÙ¹ýP×÷PD¡ÍxÖᣬ´¹×ãΪD£¬¼Ì¶øÇóµÃmµÄÖµ£¬¼´¿ÉÇóµÃ´ð°¸£®

½â´ð ½â£º£¨1£©¡ßµãBµÄºá×ø±êΪ2£¬ÓÖµãBÔÚÒ»´Îº¯Êýy=-$\frac{1}{2}$xµÄͼÏóÉÏ£¬
¡àµãB£¨2£¬-1£©£¬
ÓÖ¡ßµãBÔÚy=$\frac{k}{x}$ÉÏ£¬
¡àk=xy=2¡Á£¨-1£©=-2£¬
¡à·´±ÈÀýº¯ÊýµÄ½âÕÛʽΪ£ºy=-$\frac{2}{x}$£»

£¨2£©¡ßµãPµÄºá×ø±êΪ-1£¬ÓÖµãPÔÚy=-$\frac{2}{x}$ÉÏ£¬
¡àP£¨-1£¬2£©£¬
¡ßAÓëB¹ØÓÚÔ­µã¶Ô³Æ£¬
¡àA£¨-2£¬1£©£¬B£¨2£¬-1£©£¬
¡àAB2=£¨-2-2£©2+[1-£¨-1£©]2=20£¬PB2=£¨2+1£©2+£¨2+1£©2=18£¬PA2=£¨2-1£©2+£¨-1+2£©2=2£¬
¡àAB2=PB2+PA2£¬
¡à¡÷PABÊÇÖ±½ÇÈý½ÇÐΣ»

£¨3£©ÁîP£¨m£¬-$\frac{2}{m}$£©£¬
ÉèÖ±ÏßPAµÄ½âÎöʽΪ£ºy=ax+b£¬ÉèÖ±ÏßPBµÄ½âÎöʽΪy=px+q£¬
°ÑP£¨m£¬-$\frac{2}{m}$£©£¬A£¨-2£¬1£©´úÈëy=ax+bµÃ£º$\left\{\begin{array}{l}{-\frac{2}{m}=am+b}\\{1=-2a+b}\end{array}\right.$£¬
½âÖ®µÃ$\left\{\begin{array}{l}{a=-\frac{1}{m}}\\{b=1-\frac{2}{m}}\end{array}\right.$
¡àÖ±ÏßPAµÄ½âÎöʽΪ£ºy=-$\frac{1}{m}$x+1-$\frac{2}{m}$£¬
¡àM£¨m-2£¬0£©£¬
°ÑP£¨m£¬-$\frac{2}{m}$£©£¬B£¨2£¬-1£©´úÈëy=px+qµÃ£º$\left\{\begin{array}{l}{-\frac{2}{m}=pm+q}\\{-1=2p+q}\end{array}\right.$£¬
½âÖ®µÃ$\left\{\begin{array}{l}{p=\frac{1}{m}}\\{q=-1-\frac{2}{m}}\end{array}\right.$£¬
¡àÖ±ÏßPBµÄ½âÎöʽΪ£ºy=$\frac{1}{m}$x-1-$\frac{2}{m}$£¬
¡àN£¨m+2£¬0£©£¬
¡àMN=4£¬
ÈçÓÒͼ£¬¹ýP×÷PD¡ÍxÖᣬ´¹×ãΪD£¬
¡ß¡÷PMNÊǵȱßÈý½ÇÐΣ®
¡àPD=$\frac{\sqrt{3}}{2}$¡Á4=2$\sqrt{3}$£¬
¡àµãPµÄ×Ý×ø±êΪ2$\sqrt{3}$£¬
ÓÖ¡ßPÔÚy=-$\frac{2}{x}$ÉÏ£¬
¡àP£¨-$\frac{\sqrt{3}}{3}$£¬2$\sqrt{3}$£©£¬¼´m=-$\frac{\sqrt{3}}{3}$£¬
¡àM£¨-$\frac{\sqrt{3}}{3}$-2£¬0£©£¬N£¨2-$\frac{\sqrt{3}}{3}$£¬0£©£®

µãÆÀ ´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌ⣮¿¼²éÁË´ý¶¨ÏµÊýÇóº¯Êý½âÎöʽ£¬¹´¹É¶¨ÀíµÄÄæ¶¨Àí¡¢µÈ±ßÈý½ÇÐεÄÐÔÖÊÒÔ¼°Ö±ÏßÓë·´±ÈÀýº¯ÊýµÄ½»µãÎÊÌ⣮עÒâÇóµÃMNµÄ³¤£¬×¼È·×÷³ö¸¨ÖúÏßÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬µãAÊÇË«ÇúÏßy=$\frac{8}{x}$ÔÚµÚÒ»ÏóÏÞÉϵÄÒ»¶¯µã£¬Á¬½ÓAO²¢ÑÓ³¤½»ÁíÒ»·ÖÖ§ÓÚµãB£¬ÒÔABΪб±ß×÷µÈÑüRt¡÷ABC£¬µãCÔÚµÚ¶þÏóÏÞ£¬Ëæ×ŵãAµÄÔ˶¯£¬µãCµÄλÖÃÒ²²»¶ÏµÄ±ä»¯£¬µ«Ê¼ÖÕÔÚÒ»º¯ÊýͼÏóÉÏÔ˶¯£¬ÔòÕâ¸öº¯ÊýµÄ½âÎöʽΪ£¨¡¡¡¡£©
A£®y=$\frac{8}{x}$B£®y=$\frac{16}{x}$C£®y=-$\frac{16}{x}$D£®y=-$\frac{8}{x}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈçͼÊÇÒ»¸ö¿ÉÒÔ×ÔÓÉת¶¯µÄתÅÌ£¬×ª¶¯Õâ¸öתÅ̺ó£¬×ª³ö£¨¡¡¡¡£©É«µÄ¿ÉÄÜÐÔ×îС£®
A£®ºìB£®»ÆC£®ÂÌD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÏÂÃæÍø¸ñͼÖУ¬Ã¿¸öСÕý·½Ðεı߳¤Îª1£¬Æ½ÒÆ¡÷ABC£¬Ê¹µãAÆ½ÒÆµ½µãD£®
£¨1£©»­³öÆ½ÒÆºóµÄ¡÷DEF£»
£¨2£©Çó¡÷DEFµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£®ÔÚ¾ØÐÎABCDÖУ¬¶Ô½ÇÏßAC¡¢BD½»ÓÚµãO£¬CE¡ÍBDµãE£¬ÒÑÖªBE£ºDE=3£º1£¬BD=2$\sqrt{3}$£¬Ôò¾ØÐÎABCDµÄÖܳ¤Îª6+2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®»¶»¶ÓëÀÖÀÖÁ½È˹²Í¬¼ÆË㣨2x+a£©£¨3x+b£©£¬»¶»¶³­´íΪ£¨2x-a£©£¨3x+b£©£¬µÃµ½µÄ½á¹ûΪ6x2-13x+6£»ÀÖÀÖ³­´íΪ£¨2x+a£©£¨x+b£©£¬µÃµ½µÄ½á¹ûΪ2x2-x-6£®
£¨1£©Ê½×ÓÖеÄa¡¢bµÄÖµ¸÷ÊǶàÉÙ£¿
£¨2£©Çë¼ÆËã³öÔ­ÌâµÄÕýÈ·´ð°¸£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁв»µÈʽÖУ¬Æä½â¼¯ÊÇÈçͼËùʾµÄÊÇ£¨¡¡¡¡£©
A£®-x-1¡Ý-2B£®-2x-3¡Ý3C£®3x+4¡Ý-5D£®x-4¡Ü7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬D£¬E£¬F·Ö±ðÊÇAB£¬AC£¬BC±ßÉϵĵ㣬ÇÒ$\frac{AD}{BD}$=$\frac{AE}{CE}$=$\frac{1}{2}$£¬ÔòËıßÐÎADFEÓë¡÷ABCµÄÃæ»ýÖ®±ÈΪ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚÆ½ÃæÖ±½Ç×ø±êÖУ¬Ïß¶ÎA¡äB¡äÊÇÓÉÏß¶ÎAB¾­¹ýÆ½ÒÆµÃµ½µÄ£¬ÒÑÖªµãA£¨-2£¬1£©µÄ¶ÔÓ¦µãΪA¡ä£¨3£¬1£©£¬µãBµÄ¶ÔÓ¦µãB¡ä£¨4£¬0£©£¬ÔòµãBµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨-1£¬-1£©B£®£¨-1£¬0£©C£®£¨-2£¬-1£©D£®£¨-3£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸