精英家教网 > 初中数学 > 题目详情

【题目】常州春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:

某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?

【答案】设该单位去风景区旅游人数为x人,则人均费用为1000-20x-25)元

由题意得 x[1000-20x-25]=27000

整理得x2-75x+1350=0

解得x1=45x2=30

x=45时,人均旅游费用为1000-20x-25=600700,不符合题意,应舍去.

x=30时,人均旅游费用为1000-20x-25=900700,符合题意.

答:该单位去风景区旅游人数为30人.

【解析】试题分析:首先根据共支付给春秋旅行社旅游费用27 000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去天水湾风景区旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20x-25)元.实际每人收了[1000-20x-25]元,列出方程求解.

试题解析:设该单位这次共有x名员工去天水湾风景区旅游.

因为1000×25=2500027000,所以员工人数一定超过25人.

可得方程[1000-20x-25]x=27000

整理得x2-75x+1350=0

解得x1=45x2=30

x1=45时,1000-20x-25=600700,故舍去x1

x2=30时,1000-20x-25=900700,符合题意.

答:该单位这次共有30名员工去天水湾风景区旅游.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC在平面直角坐标系中.

(1)若把△ABC向上平移2个单位长度,再向左平移1个单位长度得到△A1B1C1,写出A1,B1,C1的坐标;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E,F,G分别是AD,CD,BC上的点,且BE=EF,BE⊥EF,EG⊥BF.若FC=1,AE=2,则BG的长是( )

A.2.6
B.2.5
C.2.4
D.2.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程

(1)求证:方程有两个不相等的实数根;

(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=5,点E是AD边上一点,BE=BC.

(1)求证:EC平分∠BED.
(2)过点C作CF⊥BE,垂足为点F,连接FD,与EC交于点O,求FD·EC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】线段AB两端点坐标分别为A(﹣1,4),B(4,﹣2),现将线段AB平移后点A的对应点坐标为(﹣4,2),则点B的对应点的坐标为( )
A.(1,4)
B.(1,﹣4)
C.(2,﹣5)
D.(1,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,BE=DF,AE=CF.

(1)求证:△AFD≌△CEB;

(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】命题“同旁内角的平分线互相垂直”是命题(填“真”或“假”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到AB两城镇,若用大小货车共15辆,已知这两种大小货车的载货能力分别为12/辆和8/辆,则恰好能一次性运完这批防护用品求这大小货车各多少辆?

查看答案和解析>>

同步练习册答案