【题目】如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,BE=DF,AE=CF.
(1)求证:△AFD≌△CEB;
(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.
【答案】(1)证明见解析;(2)四边形ABCD为矩形,理由见解析.
【解析】试题分析:(1)求出AF=CE,再利用“边角边”证明即可;
(2)根据全等三角形对应边相等可得AD=BC,全等三角形对应角相等可得∠BCE=∠DAF,再根据内错角相等,两直线平行证明AD∥BC,然后判断出四边形ABCD是平行四边形,求出∠ABC=90°,最后根据有一个角是直角的平行四边形是矩形证明.
试题解析:(1)∵BE⊥AC,DF⊥AC,∴∠AFD=∠CEB=90°.
∵AE=FC,∴AE+EF=FC+EF,∴AF=CE,
又∵BE=DF,∴△AFD≌△CEB;
(2)四边形ABCD为矩形.
∵△AFD≌△CEB,∴AD=BC,∠BCE=∠DAF.∴AD∥BC,∴四边形ABCD为平行四边形,
∵∠CBE=∠BAC,又∵∠CBE+∠ACB=90°,∴∠BAC+∠ACB=90°,∴∠ABC=90°,
∴四边形ABCD为矩形.
科目:初中数学 来源: 题型:
【题目】常州春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:
某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP交⊙O于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.
(1)求证:PB是⊙O的切线;
(2)若PC=9,AB=6,
①求图中阴影部分的面积;
②若点E是⊙O上一点,连接AE,BE,当AE=6 时,BE= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com