精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=AC,BD是AC边上的中线,BD把原三角形的周长分为15cm和9cm两部分,则腰AB的长为________cm.

10
分析:等腰三角形一腰上的中线将它的周长分为15cm和9cm两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是15cm,哪个是9cm,因此,有两种情况,需要分类讨论.
解答:解:根据题意画出图形,如图,
设等腰三角形的腰长AB=AC=2x,BC=y,
∵BD是腰上的中线,
∴AD=DC=x,
若AB+AD的长为15cm,则2x+x=15,解得x=5,
则x+y=9,即5+y=9,解得y=4;
若AB+AD的长为9,则2x+x=9,解得x=3,
则x+y=15,即3+y=15,解得y=12;
此时组不成三角形,应舍去.
所以等腰三角形的腰长可能为10.
故答案为:10.
点评:本题考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错;利用三角形三边关系判断能否组成三角形是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案