【题目】如图,已知抛物线过点,顶点为M,与x轴交于AB两点,D为AB的中点,轴,交抛物线于点E,下列结论中正确的是( )
A.抛物线的对称轴是直线x=-3B.
C.D.四边形ADEC是菱形
【答案】C
【解析】
由顶点坐标可判断A选项;
求出函数解析式,继而求出点A坐标,求出AD、CD的长,可判断B选项;
求出CD、CM、MD的长,利用勾股定理的逆定理可判断C选项;
根据AD与CE位置关系和数量关系可判断是否为平行四边形,根据AD与AC的数量关系可判断邻边是否相等,由此可判断D选项.
解:A. 抛物线的对称轴是直线x=3,故此选项错误;
B.把x=0,y=4代入得a= ;
∴,
当y=0时,,
解得,
∴点A的坐标为(-2,0)
由题意可知,C(0,4),D(3,0),
∴CD=5,AD=3-(-2)=5,
∴CD= AD,
故B选项错误;
C.由题意M(3,),C(0,4),D(3,0),
∴OC=4,OD=3,
∴CD=5,CM= ,
∴CD2+CM2=DM2,
∴∠MCD=90°,
故C选项正确;
D.∵C(0,4),抛物线的对称轴是直线x=3,轴,
∴E的坐标是(6,4),
∴CE=6,
∵AD=5,
∴CE AD,
∴四边形ADEC不是平行四边形,
∴四边形ADEC不是菱形,
故D选项错误.
故选:C.
科目:初中数学 来源: 题型:
【题目】《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”
译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”
请解答上述问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=-x2+4x+5.
(1)用配方法将y=-x2+4x+5化成y=a(x﹣h)2+k的形式;
(2)指出抛物线的开口方向、对称轴和顶点坐标;
(3)若抛物线上有两点A(x1,y1),B(x2,y2),如果x1>x2>2,试比较y1与y2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,点D是AB边的中点,点E为AC中点,点F在边BC上,AF交DE于点G,点H是FC的中点,连接GH.
(1)如图1,求证:四边形GHCE是平行四边形;
(2)如图2,当AB=AC,点F是BC中点时,在不添加任何辅助线的情况下,请直接写出图中所有长度等于BF的线段.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象与一次函数的图象交于A、B两点,点B的纵坐标为﹣1.过点A作轴于点C,且OC=1,的面积为1.
(1)求反比例函数和一次函数的表达式;
(2)若点D是反比例函数图象上的一点,且到点A、C的距离相等,求点D的坐标.
(3)结合图象直接写出当时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,,直线与轴和轴分别交于点,,若抛物线与直线有两个不同的交点,其中一个交点在线段上(包含,两个端点),另一个交点在线段上(包含,两个端点),则的取值范围是
A. B. 或C. D. 或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC与点O在10×10的网格中的位置如图所示
(1)画出△ABC绕点O逆时针旋转90°后的图形;
(2)画出△ABC绕点O逆时针旋转180°后的图形;
(3)若⊙M能盖住△ABC,则⊙M的半径最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com