【题目】已知:一次函数图象如图,
(1)求一次函数的解析式;
(2)若点P为该一次函数图象上一动点,且点A为该函数图象与x轴的交点,若S△OAP=2,求点P的坐标.
【答案】(1)y=﹣x+1;(2)P点坐标为(﹣3,4)或(5,﹣4).
【解析】
(1)利用待定系数法求一次函数解析式;
(2)先计算出函数值为0所对应的自变量的值得到A点坐标,设P(t,-t+1),根据三角形面积公式得到×1×|-t+1|=2,然后解绝对值方程求出t即可得到P点坐标.
(1)设一次函数解析式为y=kx+b,
把(﹣2,3)、(2,﹣1)分别代入得,解得,
所以一次函数解析式为y=﹣x+1;
(2)当y=0时,﹣x+1=0,解得x=1,则A(1,0),
设P(t,﹣t+1),
因为S△OAP=2,
所以×1×|﹣t+1|=2,解得t=﹣3或t=5,
所以P点坐标为(﹣3,4)或(5,﹣4).
科目:初中数学 来源: 题型:
【题目】如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.
(1)求证:四边形BEDF是菱形;
(2)若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,等腰直角三角形OAB的斜边AO在x轴上,,点B的坐标为.
(1)求A点坐标;
(2)过B作轴于C,点D从B出发沿射线BC以每秒2个单位的速度运动,连接AD、OD,动点D的运动时间为t,的面积为S,求S与t的数量关系,并直接写出t的取值范围;
(3)在(2)的条件下,当点D运动到x轴下方时,延长AB交y轴于E,过E作于H,在x轴正半轴上取点F,连接BF交EH于G,,当时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(2,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动,当直线AB与⊙O相切时,A点的坐标为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化简,得y2+2y﹣4=0,
故所求方程为y2+2y﹣4=0
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+2x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为 ;
(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com