【题目】如图,点A(0,4)、B(2,0),点C、D分别是OA、AB的中点,在射线CD上有一动点P,若△ABP是直角三角形,则点P的坐标为_____.
【答案】(6,2);(1+,2).
【解析】
根据勾股定理得到AB=2,根据三角形中位线的性质得到AC=OC=2,CD=1,AD=BD=,①当∠APB=90°时,根据直角三角形的性质得到PD=AD=,于是得到P(+1,2),②当∠ABP=90°时,如图,过P作PC⊥x轴于C,根据相似三角形的性质得到BP=AB=2,得到PC=6,求得P(6,2).
解:∵点A(0,4),点B(2,0),
∴OA=4,OB=2,
∴AB=2,
∵点C,D分别是OA,AB的中点,
∴AC=OC=2,CD=1,AD=BD=,
①当∠APB=90°时,
∵AD=BD,
∴PD=AD=,
∴PC=CD+PD=+1,
∴P(+1,2),
②当∠ABP=90°时,如图,
过P作PC⊥x轴于C,
则△ABO∽△BPC,
∴BP=AB=2,
∴PC=OB=2,
∴BC=4,
∴PC=OC=2+4=6,
∴P(6,2),
故答案为:(+1,2)或(6,2).
科目:初中数学 来源: 题型:
【题目】如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B,E,F三点共线时,两点同时停止运动.设点E移动的时间为t(秒).
(1)求当t为何值时,两点同时停止运动;
(2)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;
(3)求当t为何值时,以E,F,C三点为顶点的三角形是等腰三角形;
(4)求当t为何值时,∠BEC=∠BFC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某中学九年级学生中考体育成绩情况,现从中抽取部分学生的体育成绩进行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)统计,统计结果如图1、图2所示.
根据上面提供的信息,回答下列问题:
(1)本次抽查了 名学生的体育成绩;
(2)补全图1,求图2中D分数段所占的圆心角是 度;
(3)已知该校九年级共有900名学生,请估计该校九年级学生体育成绩达到40分以上(含40分)的人数为 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O、D分别为AB、BC的中点,做⊙O与AC相切于点E,在AC边上取一点F,使DF=DO.
⑴求证:DF是⊙O切线;⑵若sinB=,CF=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的直径AB=10,AC是⊙O的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作AD⊥DE,垂足为D,与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β,且0°<α<45°.
(1)求β(用含α的代数式表示);
(2)连结OF交AC于点G,若AG=CG,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.
(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的与x之间的函数表达式;
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,直线y=x+c与x轴交于A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过A,C.
(1)求抛物线的解析式 ;
(2)点E在抛物线的对称轴上,求CE+OE的最小值;
(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N
①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为________;
②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com