【题目】我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.
平均分(分) | 中位数(分) | 众数(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根据图示计算出a、b、c的值;
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.
【答案】(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.
【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;
(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;
(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.
详解: (1)初中5名选手的平均分,众数b=85,
高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;
(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,
故初中部决赛成绩较好;
(3),
∵,
∴初中代表队选手成绩比较稳定.
点睛: 本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.
科目:初中数学 来源: 题型:
【题目】为进一步促进“美丽校园”创建工作,某校团委计划对八年级五个班的文化建设进行检查,每天随机抽查一个班级,第一天从五个班级随机抽取一个进行检查,第二天从剩余的四个班级再随机抽取一个进行检查,第三天从剩余的三个班级再随机抽取一个进行检查…,以此类推,直到检查完五个班级为止,且每个班级被选中的机会均等
(1)第一天,八(1)班没有被选中的概率是 ;
(2)利用网状图或列表的方法,求前两天八(1)班被选中的概率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y=x2+bx+c的图像与x 轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图像上,CD//x轴,且CD=2,直线l 是抛物线的对称轴,E是抛物线的顶点.
(1)求b、c 的值;
(2)如图①,连接BE,线段OC 上的点F 关于直线l 的对称点F′ 恰好在线段BE上,求点F的坐标;
(3)如图②,动点P在线段OB上,过点P 作x 轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.
图 ① 图②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC(AC<AB<BC),请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):
(1)在边BC上确定一点P,使得PA+PC=BC;
(2)作出一个△DEF,使得:①△DEF是直角三角形;②△DEF的周长等于边BC的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).
①画出△ABC关于x轴的对称图形△A1B1C1;
②画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;
③如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是 .
(2)请在图2用无刻度的直尺在图中以AB为一边画一个面积为18的长方形ABMN.(不要求写画法,但要保留画图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位祖籍江宁的台商,应区政府的邀请,到科学园考察投资环境.他驱车在东西走向的天元路上由西向东缓慢地前进着,车载(全球卫星定位系统)显示,方山风景区(点)在其(点)南偏东的方向上,.他继续向东前进到点的位置,发现方山风景区在其南偏西的方向上.试求该台商由西向东前进的路程是多少千米?(结果精确到)(参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)若∠A=40°,求∠DBC的度数;
(2)若AE=6,△CBD的周长为20,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=50°,∠ACB=80°,延长CB至D,使DB=BA,延长BC至E,使CE=CA,连接AD,AE.求∠D,∠E,∠DAE的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com