【题目】如图,AB为⊙O的直径,D为的中点,连接OD交弦AC于点F,过点D作DE∥AC,交BA的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)连接CD,若OA=AE=4,求四边形ACDE的面积.
【答案】(1)证明见解析;(2).
【解析】
试题(1)欲证明DE是⊙O的切线,只要证明AC⊥OD,ED⊥OD即可.
(2)由△AFO≌△CFD(SAS),推出S△AFO=S△CFD,推出S四边形ACDE=S△ODE,求出△ODE的面积即可.
(1)证明:∵D为的中点
∴OD⊥AC
∵AC∥DE
∴OD⊥DE
∴DE是⊙O的切线;
(2)解:连接DC,
∵D为的中点
∴OD⊥AC,AF=CF
∵AC∥DE,且OA=AE
∴F为OD的中点,即OF=FD,在△AFO和△CFD中
∵AF=CF,∠AFO=∠CFD,OF=FD
∴△AFO≌△CFD(SAS)
∴S△AFO=S△CFD
∴S四边形ACDE=S△ODE
在Rt△ODE中,OD=OA=AE=4
∴OE=8
∴DE==
∴S四边形ACDE=S△ODE=×OD×DE=×4×=.
科目:初中数学 来源: 题型:
【题目】如图,M是平行四边形ABCD的AB边的中点,CM与BD相交于点E,设平行四边形ABCD的面积为1,则图中阴影部分的面积是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点,二次函数的对称轴为直线,其图象过点与轴交于另一点,与轴交于点.
(1)求二次函数的解析式,写出顶点坐标;
(2)动点同时从点出发,均以每秒2个单位长度的速度分别沿的边上运动,设其运动的时间为秒,当其中一个点到达终点时,另一个点也随之停止运动.连结,将沿翻折,若点恰好落在抛物线弧上的处,试求的值及点的坐标;
(3)在(2)的条件下,Q为BN的中点,试探究坐标轴上是否存在点,使得以为顶点的三角形与相似?如果存在,请求出点的坐标;如果不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
(1)求出x的值,并将不完整的条形统计图补充完整;
(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;
(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.
(1)求y与x之间的函数关系式;
(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学活动小组在一次活动中,对一个数学问题作如下探究:
(问题发现)如图1,正方形ABCD的四个顶点都在⊙O上,若点E在弧AB上,F是DE上的一点,且DF=BE.试说明:△ADF≌△ABE;
(变式探究)如图2,若点E在弧AD上,过点A作AM⊥BE,请说明线段BE、DE、AM之间满足等量关系:BE﹣DE=2AM;
(解决问题)如图3,在正方形ABCD中,CD=2,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a#0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0;②b2>4ac;③0<b<1;④当x<﹣1时,y<0.其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B的左侧).
(Ⅰ)求出点A、B的坐标;
(Ⅱ)当a<0时,经过点A的直线l:y=kx+a与y轴负半轴交于点C,与抛物线的另一个交点为D,点E是抛物线上的一个动点,且在直线l上方.
①若△ACE的面积的最大值为,求a的值;
②设P是抛物线的对称轴上的一点,点Q在抛物线上,当以点A、D、P、Q为顶点的四边形构成矩形时,请直接写出此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com