精英家教网 > 初中数学 > 题目详情

【题目】如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于(  )

A.12.5°
B.15°
C.20°
D.22.5°

【答案】B
【解析】解:

连接OB,
∵四边形ABCO是平行四边形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB为等边三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圆周角定理得∠BAF= ∠BOF=15°,
故选:B.
【考点精析】利用平行四边形的性质和圆周角定理对题目进行判断即可得到答案,需要熟知平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.

(1)求抛物线的解析式;
(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF= ,求点Q的坐标;
(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为(  )

A.1:2
B.1:3
C.1:4
D.1:1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣弧 的长为 π,直线y=﹣ x+4与x轴、y轴分别交于点A、B.

(1)求证:直线AB与⊙O相切;
(2)求图中所示的阴影部分的面积(结果用π表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E为正方形ABCDCD边上一点,∠DAE=30°,PAE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为(  )

A.
B.2
C.
D.

查看答案和解析>>

同步练习册答案