精英家教网 > 初中数学 > 题目详情

【题目】如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1 , 射线AA1分别交射线PB、射线B1B于点E、F.
(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在关系(填“相似”或“全等”),并说明理由;
(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系式.

【答案】
(1)相似
(2)解:存在,理由如下:

∵∠PAE=∠EBF,∠AEP=∠BEF,

∴△BEF∽△AEP,

若要使得△BEF≌△AEP,只需要满足BE=AE即可,

∴∠BAE=∠ABE,

∵∠BAC=60°,

∴∠BAE=

∵∠ABE=β,∠BAE=∠ABE,

即α=2β+60°


(3)解:连接BD,交A1B1于点G,

过点A1作A1H⊥AC于点H.

∵∠B1A1P=∠A1PA=60°,

∴A1B1∥AC,

由题意得:AP=A1P=2+x,∠A=60°,

∴△PAA1是等边三角形,

∴A1H=sin60°A1P=

在Rt△ABD中,BD=

∴BG=

(0≤x<2).


【解析】解:(1)相似 由题意得:∠APA1=∠BPB1=α,AP=A1P,BP=B1P,
则∠PAA1=∠PBB1=
∵∠PBB1=∠EBF,
∴∠PAE=∠EBF,
又∵∠BEF=∠AEP,∠EBF=∠EAP,
∴△BEF∽△AEP;
【考点精析】关于本题考查的相似三角形的判定与性质和旋转的性质,需要了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图和图,请根据相关信息,解答下列问题:

)图1中a的值为

)求统计的这组初赛成绩数据的平均数、众数和中位数;

)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,然后按要求解答问题:

例题:已知二次三项式 有一个因式是 ,求另一个因式以及 的值.

解法一:设另一个因式为

,

解得 ,

另一个因式为 的值为

解法二:∵二次三项式 x2-4x+m 有一个因式是 (x+3),

∴当x+3=0,即x=-3时,x2-4x+m=0.

x=-3代入x2-4x+m=0,

m=-21,

x2-4x-21=(x+3)(x-7).

问题:分别仿照以上两种方法解答下面问题:

(1)已知二次三项式 有一个因式是 ,求另一个因式以及 的值.

解法一解法二:

(2)直接回答:

已知关于x的多项式 2x3 (3k)x22x1有一个因式是 1,则k的值为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个长方形运动场被分隔成个区, 区是边长为的正方形, 区是边长为的正方形.

(1)列式表示每个区长方形场地的周长,并将式子化简;

(2)列式表示整个长方形运动场的周长,并将式子化简;

(3)如果 ,求整个长方形运动场的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,O为坐标原点.已知反比例函数y= (k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为

(1)求k和m的值;
(2)点C(x,y)在反比例函数y= 的图象上,求当1≤x≤3时函数值y的取值范围;
(3)过原点O的直线l与反比例函数y= 的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣

(2)若x2+4x﹣4=0,求3(x﹣2)2﹣6(x+1)(x﹣1)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A在数轴上对应的数为a,点B对应的数为b,且ab满足|a+3|+b﹣22=0

1)求AB两点的对应的数ab

2)点C在数轴上对应的数为x,且x是方程2x+1=x8的解.

①求线段BC的长;

②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某居民小区的一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在这块长方形空地的四个顶点处修建一个半径为a米的扇形花台,然后在花台内种花,其余种草.

(1)请分别用含ab的式子表示种花和种草的面积.(答案保留π)

(2)如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?(答案保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDOOE⊥AB

1)若∠EOD=20°,求∠AOC的度数;

2)若∠AOC∠BOC=12,求∠EOD的度数.

查看答案和解析>>

同步练习册答案