精英家教网 > 初中数学 > 题目详情

【题目】已知平面上点(每三点都不在一条直线上).

1)经过这四点最多能确定 条直线.

2)如图这四点表示公园四个地方,如果点在公园里湖对岸两处,在湖面上,要从筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?

【答案】16;2)从节省材料的角度考虑,应选择图中②,如果有人想在桥上较长时间观赏湖面风光,应选择①.理由见解析.

【解析】

1)根据任意不在同一直线上的三点画线段的公式:,共可画六条;
2)根据两点之间线段最短来解题.

1)线段ABBCCDDAACBD6条;

故答案为:6
2)从节省材料的角度考虑,应选择图中②,如果有人想在桥上较长时间观赏湖面风光,应选择①.因为由两点之间线段最短,路线②比路线①短,可以节省材料;而①路途较长,可以在桥上较长时间观赏湖面风光.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠BAC=90°ADBCDEAC的中点,ED的延长线交AB的延长线于点F.求证:

1DFB∽△AFD

2ABAC=DFAF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将图1中的正方形剪开得到图2,则图2中共有4个正方形;将图2中的一个正方形剪开得到图3,则图3中共有7个正方形;……如此剪下去,则第n个图形中正方形的个数是多少?

1)将下表填写完整:

图(n

1

2

3

4

5

……

n

正方形的个数

1

4

7

……

an

2an= (用含n的代数式表示)

3)按照上述方法,能否得到2019个正方形?如果能,请求出n;如果不能,请简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1P点从点A开始以2厘米/秒的速度沿ABC的方向移动,点Q从点C开始以1厘米/秒的速度沿CAB的方向移动,在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果PQ同时出发,用t(秒)表示移动时间,那么:

1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QAAP

2)如图2,点QCA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的

3)如图3,当P点到达C点时,PQ两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线mn,点C是直线m上一点,点D是直线n上一点,CD与直线mn不垂直,点P为线段CD的中点.

(1)操作发现:直线lmln,垂足分别为AB,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PAPB的数量关系:   

(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PAPB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.

(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线mn之间的距离为2k.求证:PAPB=kAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,过点分别作轴的垂线,垂足分别为

(1)求直线和直线的解析式;

(2)为直线上的一个动点,过轴的垂线交直线于点,是否存在这样的点,使得以为顶点的四边形为平行四边形?若存在,求此时点的横坐标;若不存在,请说明理由;

(3)沿方向平移(在线段上,且不与点重合),在平移的过程中,设平移距离为重叠部分的面积记为,试求的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点D△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点CCE⊥BCAD的延长线于点 E,连接BE.过点DDF⊥CDBC于点F.

1)若BD=DE=CE=,求BC的长;

(2)若BD=DE,求证:BF=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点,线段.

1)如图,若点在线段上,且,点分别是的中点,则线段的长度是

2)若把(1)中点在线段上,且,改为点是线段上任意一点,且,其他条件不变,请求出线段的长度(用含的式子表示);

3)若把(2)中点是线段上任意一点,改为点是直线上任意一点,其他条件不变,则线段的长度会变化吗?若有变化,求出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,△ABC中,∠C=90°,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).

2)已知内角度数的两个三角形如图2,图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.

查看答案和解析>>

同步练习册答案