解:(1)∵∠A=50°,
∴∠ABC+∠ACB=180°-50°=130°,
∵∠P=90°,
∴∠PBC+∠PCB=90°,
∴∠ABC+∠ACB=130°;∠PBC+∠PCB=90°.
(2)∠ABP+∠ACP=40°.
∵∠A=50°,
∴∠ABC+∠ACB=130°,
∵∠P=90°,
∴∠PBC+∠PCB=90°,
∴∠ABP+∠ACP
=(∠ABC-∠PBC)+(∠ACB-∠PCB)
=(∠ABC+∠ACB)-(∠PBC+∠PCB)
=130°-90°
=40°.
分析:(1)已知∠A=50°,根据三角形内角和定理易求∠ABC+∠ACB的度数.已知∠P=90°,根据三角形内角和定理易求∠PBC+∠PCB的度数.
(2)由(1)中∠ABC+∠ACB的度数,∠PBC+∠PCB的度数,相减即可得到∠ABP与∠ACP之间的数量关系.
点评:本题考查的是三角形内角和定理.此题注意运用整体法计算.关键是求出∠ABC+∠ACB,∠PBC+∠PCB的度数.