精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2 019的坐标为________

【答案】(1009,0)

【解析】

结合图象可知:纵坐标每四个点循环一次,而2019=505×4-1,故A2019的纵坐标与A3的纵坐标相同,都等于0;由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n-1(2n-1,0)(n为不为0的自然数),当n=505时,A2018(1009,1),A2019(1009,0).

故答案为:(1009,0)

解:由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n-1(2n-1,0)(n为不为0的自然数),当n=505时,A2019(1009,0).
故答案为:(1009,0)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+mx+m﹣2=0.
(1)求证:无论m取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1 , x2 , 且满足x12+x22=﹣3x1x2 , 求实数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=c,AC=b.AD△ABC的角平分线,DE⊥ABE,DF⊥ACF,EFAD相交于O,已知△ADC的面积为1.

(1)证明:DE=DF;

(2)试探究线段EFAD是否垂直?并说明理由;

(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.

(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).
(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为 时,求抛物线的函数表达式;
(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,AB=ACBDACDCEABEBDCE相交于F.

求证:AF平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数Y=﹣ x2 x+2象与x轴交于A、B两点,与y轴交于C点,点D(m,n)是抛物线在第二象限的部分上的一动点,则四边形OCDA的面积的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点O,下列条件中,不能说明ABCD的是(  )

A. AOD90°

B. AOC=∠BOC

C. BOC+∠BOD180°

D. AOC+∠BOD180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能证明ABD≌△ACD的条件是(

A. B=C,BD=DC B. ADB=ADC,BD=DC

C. B=C,BAD=CAD D. BD=DC,AB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°,则过B、C两点直线的解析式是_____

查看答案和解析>>

同步练习册答案