精英家教网 > 初中数学 > 题目详情

【题目】如图,中,的垂直平分线的平分线于点,过于点,若,则

A.B.C.D.

【答案】C

【解析】

连接BDAD,过点DDFCB于点F,利用角平分线及线段垂直平分线的性质可求出BD=ADDE=DF,依据HL定理可判断出RtAEDRtBFD,根据全等三角形的性质即可得出BF=AE,再运用AAS定理可证得RtCEDRtCFD,证出CE=CF,设AE的长度为x,根据CE=CF列方程求解即可.

如图, 连接BD、AD,过点D作DF⊥CB于点F.

的垂直平分线的平分线于点,DE⊥AC,DF⊥BC,

∴BD=AD,DE=DF.∴Rt△AED≌Rt△BFD.

∴BF=AE.

又∵∠ECD=∠FCD,∠CED=∠CFD,CA=CA,∴Rt△CED≌Rt△CFD,

∴CE=CF,

设AE的长度为x,则CE=10-x,CF=CB+BF= CB+AE= 4+x,

∴可列方程10-x=4+x,x=3,∴AE=3;

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点B60)的直线AB与直线OA相交于点A42),动点N沿路线O→A→C运动.

1)求直线AB的解析式.

2)求OAC的面积.

3)当ONC的面积是OAC面积的时,求出这时点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】满足下列条件的△ABC不是直角三角形的是(  )

A.A:∠B:∠C235B.A:∠B:∠C345

C.A﹣∠B=∠CD.BC3AC4AB5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点Ax轴的正半轴上,点Cy轴的正半轴上,OA=5,OC=4.

(1)如图①,在AB上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求D、E两点的坐标;

(2)如图②,若OE上有一动点P(不与O,E重合),从点O出发,以每秒1个单位的速度沿OE方向向点E匀速运动,设运动时间为t秒(0<t<5),过点PPMOEOD于点M,连接ME,求当t为何值时,以点P、M、E为顶点的三角形与△ODA相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣(m+1)x+m

(1)求证:抛物线与x轴一定有交点;

(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1<0<x2,且,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在八年级(1)班学生中开展对于我国国家公祭日知晓情况的问卷调调查. 问卷调查的结果分为ABCD四类,其中A类表示非常了解B类表示比较了解C类表示基本了解D类表示不太了解;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.

请根据上述信息解答下列问题:

1)该班参与问卷调查的人数有  人;

2)补全条形统计图;

3)求C类人数占总调查人数的百分比;

4)求扇形统计图中A类所对应扇形圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的结论有________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:CP是等边ABC的外角∠ACE的平分线,点D在边BC上,以D为顶点,DA为一条边作∠ADF=60°,另一边交射线CPF

(1)求证:AD=FD

(2)AB=2,BD=x,DF=y,y关于x的函数解析式

(3)若点D在线段BC的延长线上,(1)中的结论还一定成立吗?若成立,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题背景:如图1,在四边形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°EF分别是BCCD上的点,且∠EAF60°,请探究图中线段BEEFFD之间的数量关系是什么?

小明探究此问题的方法是:延长FD到点G,使DGBE,连结AG.先证明ABE≌△ADG,得AEAG;再由条件可得∠EAF=∠GAF,证明AEF≌△AGF,进而可得线段BEEFFD之间的数量关系是   

2)拓展应用:

如图2,在四边形ABCD中,ABAD,∠B+D180°EF分别是BCCD上的点,且∠EAFBAD.问(1)中的线段BEEFFD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案