【题目】已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;
(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.
【答案】(1) 1,2,3;(2);(3).
【解析】
试题(1)由求出正整数解即可.
(2)求出方程有两个不为0的整数根时的二次函数解析式,根据平移的性质得到平移后的函数图象的解析式.
(3)分直线与有一个交点且与有两个交点和直线与有两个交点且与有一个交点两种情况求解即可.
(1)∵ 方程有实数根,∴.
∴,解得.
∵为正整数,∴为1,2,3.
(2)当时,,方程的两个整数根为6,0;
当时,,方程无整数根;
当时,,方程的两个整数根为2,1
∴,原抛物线的解析式为:.
∴平移后的图象的解析式为.
(3)翻折后得到一个新的图象G的解析式为,
联立得,即.
由得.
∴当或时,直线与有一个交点,当时,直线与有两个交点.
联立得,即.
由得.
∴当或时,直线与有一个交点,当时,直线与有两个交点.
∴要使直线与图象G有3个公共点即要直线与有一个交点且与有两个交点;或直线与有两个交点且与有一个交点.
∴的取值范围为.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,E为BC上一点,F为CD上一点,且AE=AF.设△AEF的面积为y,CE=x.
(第11题)
(1)求y关于x的函数表达式.
(2)当△AEF为正三角形时,求△AEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).
(1)求抛物线的解析式;
(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;
(3)当y≤时,直接写出x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】希望中学八年级学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩较好的甲班和乙班5名学生的比赛成绩(单位:个)
1号 | 2号 | 3号 | 4号 | 5号 | 总数 | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:
(1)求两班比赛数据的中位数;
(2)计算两班比赛数据的方差,并比较哪一个小;
(3)根据以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图7,已知平行四边形ABCD的周长是32cm,AB︰BC=5︰3,AE⊥BC,垂足为E,AF⊥CD,垂足为F,∠EAF=2∠C.
(1)求∠C的度数;
(2)已知DF的长是关于的方程--6=0的一个根,求该方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点C的坐标为(﹣1,﹣3),与x轴交于A(﹣3,0)、B(1,0),根据图象回答下列问题:
(1)写出方程ax2+bx+c=0的根;
(2)写出不等式ax2+bx+c>0的解集;
(3)若方程ax2+bx+c=k有实数根,写出实数k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】临近端午节,某食品店每天卖出300只粽子,卖出一只粽子的利润为1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获得的利润更多,该店决定把零售单价下降m(0<m<1)元,
(1)零售单价降价后,每只利润为 元,该店每天可售出 只粽子.
(2)在不考虑其他因素的条件下,当零售单价下降多少元时,才能使该店每天获取的利润是420元,且卖出的粽子更多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com