【题目】如图7,已知平行四边形ABCD的周长是32cm,AB︰BC=5︰3,AE⊥BC,垂足为E,AF⊥CD,垂足为F,∠EAF=2∠C.
(1)求∠C的度数;
(2)已知DF的长是关于的方程--6=0的一个根,求该方程的另一个根.
【答案】(1)60°;(2) -2.
【解析】分析:
(1)由AE⊥BC及AF⊥CD可得得∠E=∠F=90°,结合四边形AECF的内角和为360°及∠EAF=2∠C即可求得∠C的度数;
(2)由已知条件易得AD=6,再证Rt△ADF中,∠DAF=30°即可得DF=3,把3代入方程中即可求得a的值,从而得到一元二次方程,再解所得一元二次方程,即可得到其另一根.
详解:
(1)∵AE⊥BC,AF⊥CD,
∴∠E=∠F=90°,
∵四边形AECF的内角和为360°,
∴∠EAF+∠C=360°-2×90°=180°,
∵∠EAF=2∠C,
∴2∠C+∠C=180°,
∴∠C=60°;
(2)∵ABCD为平行四边形,
∴∠DAB=∠C=60°,CD∥AB,
由已知AF⊥CD,得AF⊥AB,
∴∠FAB=90°,
∴∠FAD=∠FAB-∠DAB=30°,
由平行四边形的性质,知AB=CD,AD=BC,
由周长为32cm,得AB+BC=16cm,
由AB︰BC=5︰3,可求得BC=6cm,∴AD=BC=6cm,
在Rt△ADF中,∵∠FAD=30°,
∴DF=AD=3cm,
把DF的长代入方程中,求得=1,
∴原方程为--6=0,
解该方程得=3,=-2,
∴方程的另一个根为=-2.
科目:初中数学 来源: 题型:
【题目】如图,小河边有两个村庄A、B,要在河边建一自来水厂向A村与B村供水。
(1)若要使水厂到A、B村的距离相等,则应选择在哪建厂?
(2)若要使水厂到A、B村的水管最省料,应建在什么地方?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高港花卉中心销售一批兰花,每盆进价元,售价为元,平均每天可售出盆.为了扩大销量,该店决定适当降价.据调查,每盆兰花每降价元,每天可多售出盆.
要使得每天利润达到元,则每盆兰花售价应定为多少元?
如果该店每天兰花的进货成本不超过元,要使得每天利润达到元,则每盆兰花售价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.
(1)求证:EF=BC;
(2)若∠ABC=62°,∠ACB=29°,求∠FGC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是( )
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“五一”劳动节期间,某商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准标有数字的区域(未标数字的视为0),则顾客就可以分别获得该区域相应数字的返金券,凭返金券可以在该商场继续购物.若顾客不愿意转转盘,则每购物满200元可享受九五折优惠.
(1)写出转动一次转盘获得返金券的概率;
(2)转转盘和直接享受九五折优惠,你认为哪种方式对顾客更合算?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款元,第三天收到捐款元.
如果第二天、第三天收到捐款的增长率相同,求捐款增长率?
按照中收到捐款的增长率不变,该单位三天一共能收到多少捐款?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年初,“合肥百大”商场在滨湖新区隆重开业,某服装经销商发现某款新型运动服市场需求较大,该服装的进价为元/件,每年支付员工工资和场地租金等其它费用总计元.经过市场调查发现如果销售单价为元/件,则年销售量为件.
用含的代数式表示年获利金额;
注:年获利(销售单价-进价)年销售量-其它费用
若经销商希望该服装一年的销售获利达元,且要使产品销售量较大,你认为销售单价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com