精英家教网 > 初中数学 > 题目详情

如图,已知AB⊥BD,AB∥ED,AB=ED,要说明△ABC≌△EDC,若以“SAS”为依据,还要添加的条件为________;若添加条件AC=EC,则可以用________公理(或定理)判定全等.

BC=DC    HL
分析:根据已知条件知∠B=∠D=90°.若以“SAS”为依据判定△ABC≌△EDC,结合已知条件缺少对应边BC=DC;若添加条件AC=EC,则可以利用直角三角形全等的判定定理证明△ABC≌△EDC.
解答:∵AB⊥BD,AB∥ED,
∴ED⊥BD,
∴∠B=∠D=90°;
①又∵AB=ED,
∴在△ABC和△EDC中,
当BC=DC时,
△ABC≌△EDC(SAS);
②在Rt△ABC和△Rt△EDC中,

∴Rt△ABC≌Rt△EDC(HL);
故答案分别是:BC=DC、HL.
点评:本题综合考查了全等三角形的判定、直角三角形的全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知AB⊥BD,ED⊥BD,C是BD上一点,AB=CD,BC=ED,那么下列结论中,不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

49、如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE=
90
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,已知AB⊥BD,AC⊥CD,∠A=35°,则∠D的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永州)如图,已知AB⊥BD,CD⊥BD
(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=m,CD=n,BD=l,请问m,n,l满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个P点?三个P点?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB⊥BD,BC⊥CD,AD=a,CD=b,则BD的长的取值范围为(  )

查看答案和解析>>

同步练习册答案