【题目】如图,在平行四边形中,以点为圆心, 为半径的圆,交于点.
(1)求证: ≌;
(2)如果, , ,求的长.
【答案】(1)证明见解析;(2)EC=.
【解析】试题分析:(1)根据平行四边形的性质得出AD=BC,根据圆的半径相等可得出AB=AE,结合等腰三角形的性质和平行线的性质可得出∠B=∠EAD,从而利用SAS可证得结论;(2)在RT△ABC中,可求出BC,过圆心A作AH⊥BC,垂足为H,则BH=HE,则结合cos∠B的值,可求出BH、EH的长度,继而根据EC=BC-BE即可得出答案.
试题解析:(1)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠AEB=∠EAD,
∵AB=AE(AB与AE为圆的半径),
∴∠AEB=∠B,
∴∠B=∠EAD,
在△ABC和△EAD中, ,
故可得△ABC≌△EAD.
(2)∵AB⊥AC,
∴∠BAC=90°,
在Rt△ABC中,cos∠B=,
又∵cos∠B=,AB=6,
∴BC=10,
过圆心A作AH⊥BC,垂足为H,
则BH=HE,
在Rt△ABH中,cos∠B=,
则可得,
解得:BH=,
∴BE=,
故可得EC=BCBE=.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度(0<α ≤180°)得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于P、Q.在四边形OABC旋转过程中,若BP=BQ,则点P的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线与轴、轴分别交于点、,点为轴负半轴上一点, 于点交轴于点.已知抛物线经过点、、.
()求抛物线的函数式.
()连接,点在线段上方的抛物线上,连接、,若和面积满足,求点的坐标.
()如图, 为中点,设为线段上一点(不含端点),连接.一动点从出发,沿线段以每秒个单位的速度运动到,再沿着线段以每秒个单位的速度运动到后停止.若点在整个运动过程中用时最少,请直接写出最少时间和此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,Rt△ABC中,∠ACB=90。 , 直角边AC在射线OP上,直角顶点C与射线端点0重合,AC=b,BC=a,且满足 .
(1)求a,b的值;
(2)如图2,向右匀速移动Rt△ABC,在移动的过程中Rt△ABC的直角边AC在射线OP上匀速向右运动,移动的速度为1个单位/秒,移动的时间为t秒,连接OB,
①若△OAB为等腰三角形,求t的值;
②Rt△ABC在移动的过程中,能否使△OAB为直角三角形?若能,求出t的值:若不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com