【题目】如图1,Rt△ABC中,∠ACB=90。 , 直角边AC在射线OP上,直角顶点C与射线端点0重合,AC=b,BC=a,且满足 .
(1)求a,b的值;
(2)如图2,向右匀速移动Rt△ABC,在移动的过程中Rt△ABC的直角边AC在射线OP上匀速向右运动,移动的速度为1个单位/秒,移动的时间为t秒,连接OB,
①若△OAB为等腰三角形,求t的值;
②Rt△ABC在移动的过程中,能否使△OAB为直角三角形?若能,求出t的值:若不能,说明理由.
【答案】
(1)解:∵ , ,
∴ ,
∴a=3,b=4
(2)解:①∵AC=4,BC=3,
∴AB= =5,
∵OC=t
∴OB2=t2+32=t2+9,OA=t+4,
当OB=AB时,t2+9=25,解得t=4或t=﹣4(舍去);
当AB=OA时,5=t+4,解得t=1;
当OB=OA时,t2+9=(t+4)2,解得t= (舍去).
综上所述,t=4或t=1;
②能.
∵t>0,点C在OP上,∠ACB
∴只能是∠OBA=90°,
∴OB2+AB2=OA2,即t2+9+25=(t+4)2,解得t= .
∴Rt△ABC在移动的过程中,能使△OAB为直角三角形,此时t= .
【解析】(1)根据两个非负数的和为零则每一个数都为零,得出b-4=0 ,a-3=0 ,求解即可得出a,b的值;
(2) ①首先根据勾股定理算出AB的长及用含t的式子表示出OA,OB2 ,然后分三类讨论:当OB=AB时;当AB=OA时 ;当OB=OA时 ;一一列出方程求解即可得出t的值; ②能.由于t>0,点C在OP上,∠ACB = 90 ,故只能是∠OBA=90°,根据勾股定理得出关于t的方程求出t的值即可。
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次60秒跳绳测试中,10名同学跳的次数分别为170,190,180,150,180,180,160,200,180,190,则这次测试所跳次数的众数为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).
(1)如图1,连接DQ平分∠BDC时,t的值为 ;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)请你继续进行探究,并解答下列问题:
①证明:在运动过程中,点O始终在QM所在直线的左侧;
②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com