【题目】如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若AC=24,AB=30,且=216,则△ABD的面积是( )
A.105B.120
C.135D.115
【答案】B
【解析】
先利用勾股定理计算出BC=18,作DH⊥AB于H,如图,设DH=x,则BD=18-x,利用作法得AD为∠BAC的平分线,则根据角平分线的性质得CD=DH=x,接着证明△ADC≌△ADH得到AH=AC=24,所以BH=6,然后在Rt△BDH中利用勾股定理得到x,然后根据三角形的面积公式即可得到结论.
解:在Rt△ACB中,,
作DH⊥AB于H,如图,
由作法得AD为∠BAC的平分线,设DH=x,
∴CD=DH=x,则BD=18-x,
在Rt△ADC与Rt△ADH中,,
∴△ADC≌△ADH,(HL),
∴AH=AC=24,
∴BH=30-24=6,
在Rt△BDH中,,
解得:,
∴△ABD的面积;
故选择:B.
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+4图象交直线OA于点A(1,2),交y轴于点B,点C为坐标平面内一点.
(1)求k值;
(2)若以O、A、B、C为顶点的四边形为菱形,则C点坐标为 ;
(3)在直线AB上找点D,使△OAD的面积与((2)中菱形面积相等,则D点坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.
(1)当点P经过点C时,求直线DP的函数解析式;
(2)①求△OPD的面积S关于t的函数解析式;
②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.
(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般情况下不成立,但有些数对可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).
(1)若(1,k)是“相伴数对”,求k的值;
(2)直接写出一个“相伴数对”(a0,b0),其中a0≠0,且a0≠1;
(3)若(m,n)是“相伴数对”,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.
(1)求每个A型放大镜和每个B型放大镜各多少元;
(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
求证:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
在图中画出与关于直线l成轴对称的;
三角形ABC的面积为______;
以AC为边作与全等的三角形,则可作出______个三角形与全等;
在直线l上找一点P,使的长最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A,B在圆上,BC,AD分别与该圆相交于点E,F,G是弧AF的三等分点(弧AG>弧GF),BG交AF于点H.若弧AB的度数为30°,则∠GHF等于( )
A. 40° B. 45° C. 55° D. 80°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com