精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠C=90°,AC=BC,点OAB上,经过点A的⊙OBC相切于点D,交AB于点E

1)求证:AD平分∠BAC

2)若CD=1,求图中阴影部分的面积(结果保留π).

【答案】1)证明见解析;(2

【解析】试题分析:1)连接DEOD.利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明DAO=∠CAD,进而得出结论;

2)根据等腰三角形的性质得到B=BAC=45°,由BC相切O于点D,得到ODB=90°,求得OD=BDBOD=45°,设BD=x,则OD=OA=xOB=x,根据勾股定理得到BD=OD=,于是得到结论.

试题解析:解:(1)证明:连接DEOD

BC相切O于点D∴∠CDA=∠AEDAE为直径,∴∠ADE=90°ACBC∴∠ACD=90°∴∠DAO=∠CADAD平分BAC

2RtABC中,C=90°AC=BC∴∠B=BAC=45°BC相切O于点D∴∠ODB=90°OD=BD∴∠BOD=45°,设BD=x,则OD=OA=xOB=xBC=AC=x+1AC2+BC2=AB22x+12=x+x2x=BD=OD=图中阴影部分的面积=SBODS扇形DOE==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐上,且点A(0,2),点C(,0),如图所示:抛物线经过点B

(1)求点B的坐标;

(2)求抛物线的解析式;

(3)在抛物线上是否还存在点P(点B除外),使ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6cm的正方形ABCD中,动点P从点A出发,沿线段AB以每秒1cm的速度向点B运动;同时动点Q从点B出发,沿线段BC以每秒2cm的速度向点C运动.当点Q到达C点时,点P同时停止,设运动时间为t.(注:正方形的四边长都相等,四个角都是直角)

(1)CQ的长为______cm(用含的代数式表示);

(2)连接DQ并把DQ沿DC翻折,交BC延长线于点F.连接DPDQPQ.

①若,求t的值.

②当时,求t的值,并判断是否全等,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=2.

(1)若CE=1,求BC的长;

(2)求证:AM=DF+ME.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线为抛物线bc为常数,梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形”.

已知抛物线与其梦想直线交于AB两点A在点B的左侧,与x轴负半轴交于点C

填空:该抛物线的梦想直线的解析式为______,点A的坐标为______,点B的坐标为______;

如图,点M为线段CB上一动点,将AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的梦想三角形,求点N的坐标;

当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是等边三角形内一点,绕点 .按顺时针方向旋转, 连接.

1)求证:是等边三角形;

2)当时, 试判断的形状,并说明理由;

3)探究:为多少度时,是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=-与一次函数ykxb的图象交于AB两点,且点A的横坐标和点B的纵坐标都是-2

求:(1)一次函数的解析式;

2△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【题目】某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为20℃的条件下生长最快的新品种.图示是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是反比例函数y=一的图象上一部分,请根据图中信息解答下列问题

(1)恒温系统在这天保持大棚内温度20℃的时间有多少小时?

(2)k的值;

(3)x=20,大棚内的温度约为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.

(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;

(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.

查看答案和解析>>

同步练习册答案