【题目】如图,在平面直角坐标系中,点
的坐标是
,动点
从原点O出发,沿着
轴正方向移动,以
为斜边在第一象限内作等腰直角三角形
,设动点
的坐标为
.
![]()
(1)当
时,点
的坐标是 ;当
时,点
的坐标是 ;
(2)求出点
的坐标(用含
的代数式表示);
(3)已知点
的坐标为
,连接
、
,过点
作
轴于点
,求当
为何值时,当
与
全等.
【答案】(1) (2,2);(
,
); (2) P(
,
);(3)
.
【解析】
(1) 当
时,三角形AOB为等腰直角三角形, 所以四边形OAPB为正方形,直接写出结果;当
时,作PN⊥y轴于N,作PM⊥x轴与M,求出△BNP≌△AMP,即可得到ON+OM=OB-BN+OA+AM=OB+OA,即可求出;
(2) 作PE⊥y轴于E,PF⊥x轴于F,求出△BEP≌△AFP,即可得到OE+OF=OB+BE+OA+AF=OB+OA,即可求出;
(3) 根据已知求出BC值,根据上问得到OQ=
,△PQB≌△PCB,BQ=BC,因为OQ=BQ+OB,即可求出t.
(1) 当
时,三角形AOB为等腰直角三角形如图
![]()
所以四边形OAPB为正方形,所以P(2,2)
当
时,如图
![]()
作PN⊥y轴于N,作PM⊥x轴与M
∴四边形OMPN为矩形
∵∠BPN+∠NPA=∠APM+∠NPA=90°
∴ ∠BPN =∠APM
∵∠BNP=∠AMP
∴ △BNP≌△AMP
∴PN=PM BN=AM
∴四边形OMPN为正方形,OM=ON=PN=PM
∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3
∴OM=ON=PN=PM=![]()
∴ P(
,
)
(2) 如图
![]()
作PE⊥y轴于E,PF⊥x轴于F,则四边形OEPF为矩形
∵∠BPE+∠BPF=∠APF+∠BPF=90°
∴ ∠BPE =∠APF
∵∠BEP=∠AFP
∴ △BEP≌△AFP
∴PE=PF BE=AF
∴四边形OEPF为正方形,OE=OF=PE=PF
∴OE+OF=OB+BE+OA+AF=OB+OA=2+t
∴ OE=OF=PE=PF=![]()
∴ P(
,
);
(3) 根据题意作PQ⊥y轴于Q,作PG⊥x轴与G
![]()
∵ B(0,2) C(1,1)
∴ BC=![]()
由上问可知P(
,
),OQ=![]()
∵△PQB≌△PCB
∴BC=QB=![]()
∴ OQ=BQ+OB=
+2=![]()
解得 t=
.
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知
中,
,
,
,在
所在平面内画一条直线,将
分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )
A.0条B.1条C.2条D.3条
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的周长为17,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为点N,∠ACB的平分线垂直于AD,垂足为点M,若BC=6,则MN的长度为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一个等腰直角三角形
沿斜边上的高
剪下,与剩下部分能拼成一个平行四边形
,如图(1).
![]()
(1)想一想,判断四边形
是平行四边形的依据是_____________________________________.(用平行四边形的判定方法叙述)
(2)按上述方法做一做,请你拼一个与图(1)位置或形状不同的平行四边形。并在图(2)中面出示意图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0) 交x轴正半轴于点A,直线y=2x 经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.
![]()
(1)求a,b的值;
(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m ,△OBP的面积为S,
.求K关于m 的函数表达式及K的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的情景对话,然后解答问题:
老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
![]()
问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?___________填“是”或“否”)
问题(2):已知
中,两边长分别是5,
,若这个三角形是奇异三角形,则第三边长是_____________;
问题(3):如图,以
为斜边分别在
的两侧作直角三角形,且
,若四边形
内存在点
,使得
,
.试说明:
是奇异三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列条件不能判定四边形ABCD是矩形的是( )
![]()
A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥AD
C.AO=BO,CO=DOD.AO=BO=CO=DO
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是
.
(1)求木箱中装有标1的卡片张数;
(2)求从箱子中随机摸出一张标有数字3的卡片的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com