【题目】(本题10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E。
(1)求证:DE是⊙O的切线;
(2)求DE的长。
【答案】(1)详见解析;(2)4.
【解析】
试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.
试题解析:
(1)连结OD,
∵AD平分∠BAC,
∴∠DAE=∠DAB,
∵OA=OD,
∴∠ODA=∠DAO,
∴∠ODA=∠DAE,
∴OD∥AE,
∵DE⊥AC
∴OE⊥DE
∴DE是⊙O的切线;
(2)过点O作OF⊥AC于点F,
∴AF=CF=3,
∴OF=,
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形OFED是矩形,
∴DE=OF=4.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=AD , CB=CD , E是CD上一点,BE交AC于F , 连接DF .
(1)证明:∠BAC=∠DAC , ∠AFD=∠CFE .
(2)若AB∥CD , 试证明四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.
(1)求证:∠A=∠BCD;
(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的解题过程,并在横线上补全推理过程或依据. 已知:如图,DE∥BC,DF、BE分别平分∠ADE、∠ABC.
试说明∠FDE=∠DEB.
解:∵DE∥BC(已知)
∴∠ADE= . ()
∵DF、BE分别平分∠ADE、∠ABC (已知)
∴∠ADF= ∠ADE
∠ABE= ∠ABC(角平分线定义)
∴∠ADF=∠ABE()
∴DF∥ . ()
∴∠FDE=∠DEB.()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:
(1)平移后的三个顶点坐标分别为:A1 , B1 , C1;
(2)画出平移后三角形A1B1C1;
(3)求三角形ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 连接两点的线段,叫做两点间的距离
B. 射线OA与射线AO表示的是同一条射线
C. 经过两点有一条直线,并且只有一条直线
D. 从一点引出的两条直线所形成的图形叫做角
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com