精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,点E、F分别为边BC、CD上两点,∠EAF=45°, 过点A作∠GAB=∠FAD,且点G为边CB延长线上一点.①△GAB≌△FAD吗?说明理由。②若线段DF=4, BE=8,求线段EF的长度。③若DF=4,CF=8.求线段EF的长度。

【答案】(1)全等 (2)7 (3)EF=10

【解析】(1)、根据正方形的性质得出AB=AD,∠ABG=∠D,结合∠GAB=∠FAD得出三角形全等;(2)、根据三角形全等得出BG=DF=4,AG=AF,根据∠EAF=45°以及三角形全等、正方形的性质得出∠GAE=∠EAF,从而得出△GAE和△FAE全等,从而得出答案;(3)、根据第二题的结论得出答案.

(1)全等

证明:∵四边形ABCD为正方形, ∴AB=AD,∠ABG=∠D,

在△ABG和△ADF中 ∵∠GAB=∠FAD,AB=AD,∠ABG=∠D, ∴△GAB≌△FAD.

(2)解:∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,

∵△GAB≌△FAD, ∴∠GAB=∠FAD,AG=AF, ∴∠GAB+∠BAE=45°,∴∠GAE =45°,

∴∠GAE=∠EAF, 在△GAE和△FAE中,∵AG=AF, ∠GAE=∠EAF,AE=AE,

∴△GAE≌△FAE(SAS), ∴EF=GE, ∵△GAB≌△FAD,∴GB=DF,

∴EF=GE=GB+BE=FD+BE=3+4=7;

(3)EF=10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】3分)如图,AD△ABC的角平分线,DE⊥AC,垂足为EBF∥ACED的延长线于点F,若BC恰好平分∠ABFAE=2BF.给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF,其中正确的结论共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点ECD的中点,BD=12,则△DOE的周长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】规定:在平面直角坐标系中,如果点P的坐标为(mn),向量可以用点P的坐标表示为:=(mn).已知=(x1y1),=(x2y2),如果x1x2+y1y20,那么互相垂直,在下列四组向量中,互相垂直的是(  )

A.=(320190),=(﹣311

B.=(11),=(+11

C.=(),=((﹣28

D.=(+2),=(2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=6AC=10ADBC边上的中线,且AD=4,延长AD到点E,使DE=AD,连接CE

(1)求证:△AEC是直角三角形.

(2)BC边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABD中,∠BAD80°CBD延长线上一点,∠BAC130°,∠ABD的角平分线与AC交于点E,连接DE

1)求证:点EDADC的距离相等;

2)求∠BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要建一个如图所示的面积为300 的长方形围栏,围栏总长50m,一边靠墙(墙长25m),

(1)求围栏的长和宽;

(2)能否围成面积为400 的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E在△ABC外部,点D在边BC上,DE交AC于点F.若∠1=∠2=∠3,AC=AE,求证△ABC≌△ADE.

查看答案和解析>>

同步练习册答案