精英家教网 > 初中数学 > 题目详情

【题目】要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷头,使喷出的抛物线形水柱在与水池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离中心3m

1)在给定的坐标系中画出示意图;

2)求出水管的长度.

【答案】1)详见解析;(2)水管长为2.25m

【解析】

1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系;

2)设抛物线的解析式为yax12+30x3),将(30)代入求得a值,则x0时得的y值即为水管的长.

解:(1)建立以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系;

2)由于在距池中心的水平距离为1m时达到最高,高度为3m

则设抛物线的解析式为:

yax12+30x3),

代入(30)求得:a=﹣

a值代入得到抛物线的解析式为:

y=﹣x12+30x3),

x0,则y2.25

故水管长为2.25m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形EFGH内接于△ABC,且边FG落在BC上,若ADBCBC3AD2EFEH

(1)求证:△AEH∽△ABC

(2)求矩形EFGH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与双曲线交于两点,与轴交于点,已知点的坐标为点坐标为

1)求函数的表达式和点坐标;

2)观察图像,当时,直接写出的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCADE都是等腰直角三角形,连接CDBECDBE相交于点OBAE可看作是由CAD顺时针旋转所得.

1)旋转中心是 ,旋转角度是

2)判断CDBE的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点C(O,4),与轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴与抛物线交于点D,与直线BC交于点E.

(1)求抛物线的解析式;

(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;

(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线(m>0)与x轴的交点为AB

1)求抛物线的顶点坐标;

2)横、纵坐标都是整数的点叫做整点.

m1时,求线段AB上整点的个数;

若抛物线在点AB之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边三角形ABC内的一点,且PA6PB8PC10

1)尺规作图:作出将△PAC绕点A逆时针旋转60°后所得到的△PAB(不要求写作法,但需保留作图痕迹).

2)求点P与点P′之间的距离及∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线轴交于两点,与轴交于点,顶点为点

1)求这条抛物线的解析式及直线的解析式;

2上一动点(点不与点重合),过点轴引垂线,垂足为,设的长为,四边形的面积为.求之间的函数关系式及自变量的取值范围;

3)在线段上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.

(1)求每年市政府投资的增长率;

(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?

查看答案和解析>>

同步练习册答案