精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形EFGH内接于△ABC,且边FG落在BC上,若ADBCBC3AD2EFEH

(1)求证:△AEH∽△ABC

(2)求矩形EFGH的面积.

【答案】(1)见解析;(2)矩形EFGH的面积为.

【解析】

(1)由EH∥FG可得∠AEH=∠ABC,∠AHE=∠ACB,根据两角对应相等的两个三角形相似即可判定△AEH∽△ABC;(2)根据相似三角形的性质求得EH的长,再求得EF的长,利用矩形的面积公式即可求得矩形EFGH的面积.

(1)证明:∵四边形EFGH是矩形

∴EH∥FG,EF⊥FG

∵EH∥FG

∴∠AEH=∠ABC,∠AHE=∠ACB

∴△AEH∽△ABC

(2)∵EF⊥FG,AD⊥BC

∴AD∥EF

∵EH∥BC

,且BC=3,AD=2,EF=EH.

∴EH=

即EF=1

∴矩形EFGH的面积=EF×EH=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,∠ABC=∠ADC,对角线ACBD交于点OAOBODE平分∠ADCBC于点E,连接OE

1)求证:四边形ABCD是矩形;

2)若AB2,求△OEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐。

(1)1个大餐厅和1个小餐厅分别可供多少名学生就餐?

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出个.设销售价格每个降低元,每周销售量为y个.

(1)求出销售量个与降价元之间的函数关系式;

(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=+mx+3x轴交于AB两点,与y轴交于点C,点B的坐标为(30),

1)求m的值及抛物线的顶点坐标.

2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AB=8,点P在边CD上,tanPBC=,点Q是在射线BP上的一个动点,过点QAB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.

1)如图1,当点R与点D重合时,求PQ的长;

2)如图2,试探索: 的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;

3)如图3,若点Q在线段BP上,设PQ=xRM=y,求y关于x的函数关系式,并写出它的定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2C分别交ACBC于点DE,得到DE弧.

(1)求证:ABC的切线.

(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 是一块边长为4米的正方形苗圃,园林部门将其改造为矩形的形状,其中点边上,点的延长线上, 的长为米,改造后苗圃的面积为平方米.

(1) 之间的函数关系式为 (不需写自变量的取值范围);

(2)根据改造方案,改造后的矩形苗圃的面积与原正方形苗圃的面积相等,请问此时的长为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)

查看答案和解析>>

同步练习册答案