精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2C分别交ACBC于点DE,得到DE弧.

(1)求证:ABC的切线.

(2)求图中阴影部分的面积.

【答案】(1)证明见解析;(2)5-π.

【解析】

(1)解直角三角形求出BC根据勾股定理求出AB根据三角形面积公式求出CF根据切线的判定得出即可

(2)分别求出△ACB的面积和扇形DCE的面积即可得出答案

1)过CCFABF

∵在Rt△ABC,∠C=90°,AC,tanB,∴BC=2由勾股定理得AB5.

∵△ACB的面积S,∴CF2,∴CFC的半径

CFAB,∴ABC的切线

(2)图中阴影部分的面积=SACBS扇形DCE5﹣π

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是平行四边形,下列结论中错误的有(  )

①当ABBC时,它是菱形;②当ACBD时,它是菱形;③当∠ABC90°时,它是矩形;④当ACBD时,它是正方形.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边AB的中点,将OA绕着点O逆时针旋转α(0°<α<180°)到OP.当△BCP为等腰三角形时,α的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形EFGH内接于△ABC,且边FG落在BC上,若ADBCBC3AD2EFEH

(1)求证:△AEH∽△ABC

(2)求矩形EFGH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在钝角三角形ABCAB=6cmAC=12cm动点DA点出发到B点止动点EC点出发到A点止.D运动的速度为1cm/E运动的速度为2cm.如果两点同时运动那么当以点A、D、E为顶点的三角形与△ABC相似时运动的时间是( )

A. 32.8 B. 34.8 C. 14 D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,书中有下列问题:今有勾五步,股十二步,问勾中容方几何?其意思为今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?该问题的答案是________步.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)证明:无论m为何值方程都有两个实数根;

(2)是否存在正数m,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场,为了吸引顾客,在白色情人节当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.

两红

一红一白

两白

礼金券(元)

18

24

18

1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.

2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点PPF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.

(1)求抛物线的解析式;

(2)PE的长最大时m的值.

(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案