精英家教网 > 初中数学 > 题目详情

【题目】如图,P是等边三角形ABC内的一点,且PA6PB8PC10

1)尺规作图:作出将△PAC绕点A逆时针旋转60°后所得到的△PAB(不要求写作法,但需保留作图痕迹).

2)求点P与点P′之间的距离及∠APB的度数.

【答案】1)详见解析;(2PP′=6,∠APB150°.

【解析】

1)作等边三角形APP′,连接PB,则△PAB是所求作的三角形;

2)根据旋转的性质得到∠PAP′=60°,PAPA6PBPC10,利用等边三角形的判定方法得到△PAP′为等边三角形,再根据等边三角形的性质有PP′=PA6,∠PPA60°,由于PP2+PB2PB2,根据勾股定理的逆定理得到△BPP′为直角三角形,且∠BPP′=90°,则∠APB=∠PPB+BPP′=60°+90°=150°.

解:(1)将△PAC绕点A逆时针旋转60°后所得到的△P′AB如图:

2)如图,∵△PAC绕点A逆时针旋转60°后,得到△P′AB

∴∠PAP′60°PAP′A6P′BPC10

∴△PAP′为等边三角形,

∴PP′PA6∠P′PA60°

△BPP′中,P′B10PB8PP′6

∵62+82102

∴PP′2+PB2P′B2

∴△BPP′为直角三角形,且∠BPP′90°

∴∠APB∠P′PB+∠BPP′60°+90°150°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:

次数

1

2

3

4

5

6

7

8

9

10

黑棋数

1

3

0

2

3

4

2

1

1

3

根据以上数据,估算袋中的白棋子数量为( )

A. 60 B. 50 C. 40 D. 30

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.

1)求之间的函数关系式,并写出自变量的取值范围;

2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷头,使喷出的抛物线形水柱在与水池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离中心3m

1)在给定的坐标系中画出示意图;

2)求出水管的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图C是线段BD上一点,分别以BCCD为边在BD同侧作等边ABC和等边CDE,ADCEFBEACG,则图中可通过旋转而相互得到的三角形对数有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是等腰RtABC外一点,把线段BP绕点B顺时针旋转90°得到线段BP',已知∠AP'B135°P'AP'C13,则P'APB_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的.连接BE、CF相交于点D.

(1)求证:BE=CF.

(2)当四边形ACDE为菱形时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70,销售量y()与销售单价x()的关系可以近似的看作一次函数(如图).

(1)请直接写出y关于x之间的关系式

(2)设该商铺销售这批商品获得的总利润(总利润=总销售额一总成本)P元,求Px之间的函数关系式,并写出自变量x的取值范围;根据题意判断:x取何值时,P的值最大?最大值是多少?

(3)若该商铺要保证销售这批商品的利润不能低于400,求销售单价x()的取值范围是 .(可借助二次函数的图象直接写出答案)

查看答案和解析>>

同步练习册答案