精英家教网 > 初中数学 > 题目详情

【题目】四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )

A. B. C. D.

【答案】B

【解析】

假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).

假设甲和丙的结论正确,则

解得:

∴抛物线的解析式为y=x2-2x+4.

x=-1时,y=x2-2x+4=7,

∴乙的结论不正确;

x=2时,y=x2-2x+4=4,

∴丁的结论正确.

∵四位同学中只有一位发现的结论是错误的,

∴假设成立.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75,其图象如图所示.

(1)ab的值;

(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(参考公式:当x=时,二次函数y=ax2+bx+c(a≠0)有最小(大)值)

(3)销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+ax+b=0(b≠0)与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2-x-6=0与x2-2x-3=0互为“同根轮换方程”.

(1)若关于x的方程x2+4x+m=0与x2-6x+n=0互为“同根轮换方程”,求m的值;

(2)已知方程①:x2+ax+b=0和方程②:x2+2ax+b=0,p、q分别是方程①和方程②的实数根,且p≠q,b≠0.试问方程①和方程②是否能互为“同根轮换方程”?如果能,用含a的代数式分别表示p和q;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC为⊙O的直径,A为⊙O上的点,以BC、AB为边作ABCD,OAD于点E,连结BE,点P为过点B的⊙O的切线上一点,连结PE,且满足∠PEA=ABE.

(1)求证:PB=PE;

(2)若sinP=的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点CA共线.

已知:CBADEDAD,测得BC=1mDE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.

(1)求A,B两点的坐标和此抛物线的对称轴;

(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是⊙O上一点,⊙O的半径为,D、E分别是弦AC、BC上一动点,且OD=OE=,则AB的最大值为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:

在综合实践课上,张老师让同学们以“矩形的折叠”为主题开展数学活动,张老师拿着一张矩形纸片ABCD,其中AB=acm, AD=bcm, 如图1,先沿对角线BD折叠,点C落在点E的位置,BEAD于点F.

操作发现:

(1)“奋进”小组发现与BF的长度一定相等的线段是哪一条

(2)如图2.“雄鹰”小组将图1再折叠一次,使点D与点A重合,得到折痕GH,GHAD于点M,发现△DGH是等腰三角形,请你证明这个结论;

实践探究:

(3)“创新”小组将自己准备的矩形纸片按照(2)中“雄鹰”小组的作法操作,发现点E和点G重合,,如图3,试探究“创新”小组准备的矩形纸片中ab满足的数量关系;

(4)”爱心小组在其他小组的基础上提出问题:当ab满足什么关系时,点GDE的中点?请你直接出ab满足的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABMRtADN的斜边分别为正方形的边ABAD,其中AM=AN.

(1)求证:RtABMRtAND

(2)线段MN与线段AD相交于T,若AT=,的值

查看答案和解析>>

同步练习册答案