10£®¶ÔÓÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÈÎÒâÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©¸ø³öÈç϶¨Ò壺ÎÒÃǰÑ|x1-x2|+|y1-y2|½Ð×öA¡¢BÁ½µãÖ®¼äµÄÖ±½Ç¾àÀ룬¼Ç×÷d£¨A£¬B£©
£¨1£©Èçͼ1£¬ÒÑÖªOÎª×ø±êÔ­µã£¬µãPʱֱÏßÉÏy=-$\frac{3}{4}$x+3µÄÒ»¸ö¶¯µã
¢ÙÈôµãPµÄ×ø±êΪ£¨l£¬t£©£¬Ôòd£¨O£¬P£©=$\frac{13}{4}$£»
¢ÚÈôµãE£¨-1£¬0£©£¬Çód£¨P£¬E£©µÄ×îСֵ£»
£¨2£©Èçͼ2£¬ÈôµãPÊÇÒÑÖªÖ±Ïßy=kx+b£¨k£¼0£¬b£¾0£©ÉϵÄÒ»¸ö¶¯µã£¬µãQÊÇÕý·½ÐÎOABCµÄÒ»¸ö¶¯µã£¬ÆäÖÐA£¨-1£¬1£©£¬ÇÒÖ±Ïßy=kx+b£¨k£¼0£¬b£¾0£©ÓëÕý·½ÐÎOABCûÓй«¹²µã£¬Çód£¨P£¬Q£©µÄ×îСֵ£¨Óú¬k£¬bµÄ´úÊýʽ±íʾ£©

·ÖÎö £¨1£©¢Ù¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃPµã×ø±ê£¬¸ù¾Ý|x1-x2|+|y1-y2|½Ð×öA¡¢BÁ½µãÖ®¼äµÄÖ±½Ç¾àÀ룬¼Ç×÷d£¨A£¬B£©£¬¿ÉµÃ´ð°¸£»
¢Ú·ÖÀàÌÖÂÛ£ºx¡Ý-1£¬x£¼-1£¬¸ù¾Ý|x1-x2|+|y1-y2|½Ð×öA¡¢BÁ½µãÖ®¼äµÄÖ±½Ç¾àÀ룬¼Ç×÷d£¨A£¬B£©
£¨2£©¸ù¾Ýº¯Êý¹ØÏµÊ½£¬¿ÉµÃP¡¢QµãµÄ×ø±ê£¬¸ù¾Ý|x1-x2|+|y1-y2|½Ð×öA¡¢BÁ½µãÖ®¼äµÄÖ±½Ç¾àÀ룬¼Ç×÷d£¨P£¬Q£©£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©¢ÙÈôµãPµÄ×ø±êΪ£¨l£¬t£©£¬¼´P£¨1£¬$\frac{9}{4}$£©£¬
Ôòd£¨O£¬P£©=|1-0|+|$\frac{9}{4}$-0|=1+$\frac{9}{4}$=$\frac{13}{4}$£¬
¹Ê´ð°¸Îª£º$\frac{13}{4}$£»
¢Úµ±x¡Ý-1ʱ£¬d£¨P£¬E£©=|x+1|+|-$\frac{3}{4}$x+3|=x+1-$\frac{3}{4}$x+3=$\frac{1}{4}$x+4£¬
x=-1ʱ£¬d£¨P£¬E£©×îС=$\frac{15}{4}$£»
µ±x¡Ü-1ʱ£¬d£¨P£¬E£©=|x+1|+|-$\frac{3}{4}$x+3|=-x-1-$\frac{3}{4}$x+3=-$\frac{7}{4}$x+2£¬
x=-1ʱ£¬d£¨P£¬E£©×îС=$\frac{15}{4}$£¬
×ÛÉÏËùÊöd£¨P£¬E£©×îС=$\frac{15}{4}$£»
£¨2£©BCµÄ½âÎöʽΪy=-x+2£¬
ÉèQ£¨x£¬-x+2£©£¬P£¨x£¬kx+b£©£¬
d£¨P£¬Q£©×îС=|x-x|+|kx+b+x-2|=£¨k+1£©x+b-2£¬
µ±-1£¼k£¼0ʱ£¬x=0ʱ£¬d£¨P£¬Q£©×îС=b-2£¬
µ±k=-1ʱ£¬d£¨P£¬Q£©×îС=b-2£¬
µ±k£¼-1ʱ£¬x=1ʱ£¬d£¨P£¬Q£©×îС=k+b-1£»
×ÛÉÏËùÊö£ºd£¨P£¬Q£©×îС=$\left\{\begin{array}{l}{b-2£¨-1¡Ük£¼0£©}\\{k+b-1£¨k£¼-1£©}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬ÀûÓÃÁËÖ±½Ç¾àÀ룬·ÖÀàÌÖÂÛÊǽâÌâ¹Ø¼ü£¬ÒÔ·ÀÒÅ©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÒ»¸öÔ²×¶µÄµ×Ãæ°ë¾¶Îª2$\sqrt{2}$£¬¾­¹ýÖáµÄ½ØÃæÊÇÒ»¸öµÈÑüÖ±½ÇÈý½ÇÐΣ¬Çó¸ÃÔ²×¶µÄ±íÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³Ð£ÎªÁËÔöǿѧÉú¶ÔÖлªÓÅÐ㴫ͳÎÄ»¯µÄÀí½â£¬¾ö¶¨¹ºÂòÒ»ÅúÏà¹ØµÄÊé¼®£®¾ÝÁ˽⣬¾­µäÖø×÷µÄµ¥¼Û±È´«Ëµ¹Êʵĵ¥¼Û¶à8Ôª£¬ÓÃ12000Ôª¹ºÂò¾­µäÖø×÷ÓëÓÃ8000Ôª¹ºÂò´«Ëµ¹Êʵı¾ÊýÏàͬ£¬ÕâÁ½ÀàÊé¼®µÄµ¥¼Û¸÷ÊǶàÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®»¯¼ò£º-3$\sqrt{\frac{3{m}^{2}-3{n}^{2}}{2a}}$$¡Â\frac{3}{2}$$\sqrt{\frac{m+n}{a}}$•$\sqrt{\frac{a}{m-n}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈçͼËùʾ£¬ÒÑÖª¡÷ABCÃæ»ýΪl£¬µãD¡¢E¡¢F·Ö±ðÔÚBC¡¢CA¡¢ABÉÏ£¬ÇÒBD=2DC£¬CE=2EA£¬AF=2FB£¬AD¡¢BE¡¢CFÁ½Á½ÏཻÓÚP¡¢Q¡¢R£¬Ôò¡÷PQRµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{1}{5}$B£®$\frac{1}{6}$C£®$\frac{1}{7}$D£®$\frac{1}{14}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªABΪ¡ÑOµÄÖ±¾¶£¬ÏÒEFËùÔÚµÄÖ±ÏßÓëÖ±¾¶AB½»ÓÚµãM
£¨1£©Èçͼ1£¬ÈôMÔÚ¡ÑOÄÚ£¬Ð´³ö¡ÏAEFÓë¡ÏBAFµÄÊýÁ¿¹ØÏµ£¬²¢Ö¤Ã÷£»
£¨2£©Èçͼ2£¬ÈôMÔÚ¡ÑOÍ⣬д³ö¡ÏAEFÓë¡ÏBAFµÄÊýÁ¿¹ØÏµ£¬²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈçͼËùʾÊÇÒ»¸öÁ¢ÌåͼÐεÄÈýÊÓͼ£¬¸ÃÎïÌåÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ä¾¹¤Ê¦¸µ×öÁËÒ»ÕÅ×ÀÃæ£¬ÒªÇóΪ³¤·½ÐΣ¬ÏÖÁ¿µÃ×ÀÃæµÄ³¤Îª60cm£¬¿íΪ32cm£¬¶Ô½ÇÏßΪ66cm£¬Õâ¸ö×ÀÃæ²»ºÏ¸ñ£¨Ìî¡°ºÏ¸ñ¡±»ò¡°²»ºÏ¸ñ¡±£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈÎѡһ¸ö²»´óÓÚ20µÄÕýÕûÊý£¬ËüÇ¡ºÃÊÇ4µÄÕûÊý±¶µÄ¸ÅÂÊÊÇ$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸