精英家教网 > 初中数学 > 题目详情

【题目】如图,一块直角三角形的纸片,两直角边AC=6cmBC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于(   .

A. 2 cm B. 4 cm C. 3 cm D. 5 cm

【答案】C

【解析】

根据折叠的性质可得AC=AE=6CD=DE,∠ACD=AED=DEB=90°,利用勾股定理列式求出AB,从而求出BE,设CD=DE=x,表示出BD,然后在RtDEB中,利用勾股定理列式计算即可得解.

ACDAED关于AD成轴对称,

AC=AE=6cm,CD=DE,

RtABC,

AB=10

BE=ABAE=106=4

CD=DE=xcm,则DB=BCCD=8x

RtDEB,由勾股定理,

解得x=3,即CD=3cm.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EF过对角线的交点O,且与边ABCD分别相交于点EFAB5AD3OF1.5,则四边形BCFE的周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:

1)由,因为,请确定______位数;

2)由32768的个位上的数是8,请确定的个位上的数是________,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_____________

(3)已知分别是两个数的立方,仿照上面的计算过程,请计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.

价格(万元/)

7

5

每台日产量()

100

60

(1)按该公司要求可以有几种购买方案?

(2)如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援,伤员在C处,直升机在A处,伤员离云梯(AP)150米(即CP的长).伤员从C地前往云梯的同时,直升机受到惯性的影响又往前水平行进50米到达B处,此时云梯也移动到BQ位置,已知∠ACP=30°,∠APQ=60°,∠BQI=43°.问:伤员需前行多少米才能够到云梯?(结果保留整数,sin43°=0.68,cos43°=0.73,tan43°=0.93, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5只不透明的袋子中各装有10个球,每个球除颜色外都相同.

1)将球搅匀,分别从每只袋子中摸一个球,摸到白球的概率一样大吗?为什么?

2)将袋子的序号按摸到白球的概率从小到大的顺序排列.

1 2 3 4 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB分别为直线上两点,且,若射线绕点顺时针旋转至后立即回转,射线绕点B逆时针旋转至后立即回转,两射线分别绕点A、点B不停地旋转,若射线转动的速度是/秒,射线转动的速度是/秒,且ab满足.若射线绕点A顺时针先转动18秒,射线才开始绕点B逆时针旋转,在射线到达之前,问射线再转动_______秒时,射线与射线互相平行.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题

(1)本次抽样调查共抽取多少名学生?
(2)补全条形统计图.
(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.
(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?
(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,

(1)求证:△CMN是等边三角形;
(2)判断CN与⊙O的位置关系,并说明理由;
(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.

查看答案和解析>>

同步练习册答案