精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数的图象与轴交于点,交轴于点,点是二次函数图象上关于抛物线对称轴的一对对称点,一次函数的图象过点

请直接写出点的坐标;

求二次函数的解析式;

根据图象直接写出一次函数值大于二次函数值的的取值范围.

【答案】(1)的坐标为;(2);(3)时,一次函数值大于二次函数值.

【解析】

(1)根据点AB的坐标求出对称轴解析式,再根据二次函数的对称性求解即可;
(2)根据点A、B、C的坐标利用待定系数法求二次函数解析式求解即可;
(3)根据函数图象写出一次函数在二次函数图象上方部分的x的取值范围即可.

二次函数的图象与轴交于点

对称轴为直线

是二次函数图象上关于抛物线对称轴的一对对称点,

的坐标为

设函数解析式为

解得

所以,函数表达式为

由图可知,时,一次函数值大于二次函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知x=1是一元二次方程(m+1)x-mx+2m+3=0的一个根。

(1)求m的值,并写出此时的一元二次方程的一般形式

(2)把方程两根分别记为,不解方程,求的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购物满元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得元的购物券

求转动一次转盘获得购物券的概率;

转转盘和直接获得购物券,你认为哪种方式对顾客更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,其对称轴为,则正确的结论是(

A. abc>0 B. 3a+c<0

C. 4a+2b+c<0 D. b2-4ac<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角△ABC中,AC10SABC 25,∠BAC的平分线交BC于点D,点MN分别是ADAB上的动点,则BMMN的最小值是( )

A. 4 B. C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】海珠区某学校为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一人一球”活动计划. 学生可根据自己的喜好选修一门球类项目(A :足球,B:篮球,C:排球,D:羽毛球,E:乒乓球),陈老师对某班全班同学的

选课情况进行统计后,制成了两幅不完整的统计图 (如图).

(1) 求出该班的总人数,并将条形统计图补充完整;

(2) 若该校共有学生 2500 名,请估计约有多少人选修足球?

(3) 该班班委 4 人中,1 人选修足球,1 人选修篮球,2 人选修羽毛球,陈老师要从这

4 人中任选 2 人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求 选出的 2 人中至少有 1 人选修羽毛球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年中秋节来期间,某超市以每盒80元的价格购进了1000盒月饼,第一周以每盒168元的价格销售了300盒,第二周如果单价不变,预计仍可售出300盒,该超市经理为了增加销量,决定降价,据调查,单价每降低1元,可多售出10盒,但最低每盒要赢利30元,第二周结束后,该超市将对剩余的月饼一次性赔钱甩卖,此时价格为70/盒.

1)若设第二周单价降低x元,则第二周的单价是 ______ ,销量是 ______

2)经两周后还剩余月饼 ______ 盒;

3)若该超市想通过销售这批月饼获利51360元,那么第二周的单价应是多元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC是正三角形,P是三角形内一点,PA=3PB=4PC=5.求:∠APB的度数.

查看答案和解析>>

同步练习册答案