精英家教网 > 初中数学 > 题目详情
12.菱形ABCD中,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°
(1)如图1,当点E是CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(2)如图2,当点E在CB的延长线上时,且∠EAB=15°,求点F到BC的距离.

分析 (1)欲证明BE=CF,只要证明△BAE≌△CAF即可.
(2)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.

解答 (1)证明:连接AC,如图1中,∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAE,
在△BAE和△CAF中,
$\left\{\begin{array}{l}{∠BAE=∠CAF}\\{BA=AC}\\{∠B=∠ACF}\end{array}\right.$,
∴△BAE≌△CAF,
∴BE=CF.

(2)解:如图2中,过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,
∵∠EAB=15°,∠ABC=60°,
∴∠AEB=45°,
在RT△AGB中,∵∠ABC=60°,AB=4,
∴BG=$\frac{1}{2}$AB=2,AG=$\sqrt{3}$BG=2 $\sqrt{3}$,
在RT△AEG中,∵∠AEG=∠EAG=45°,
∴AG=GE=2 $\sqrt{3}$,
∴EB=EG-BG=2 $\sqrt{3}$-2,
∵△AEB≌△AFC,
∴AE=AF,EB=CF=2 $\sqrt{3}$-2,
在RT△CHF中,∵∠HCF=180°-∠BCD=60°,CF=2 $\sqrt{3}$-2,
∴FH=CF•sin60°=(2 $\sqrt{3}$-2)•$\frac{\sqrt{3}}{2}$=3-$\sqrt{3}$.
∴点F到BC的距离为3-$\sqrt{3}$.

点评 本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为$\frac{8}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC.若AB=m,AD=n,则四边形OCED的面积为(  )
A.mnB.$\frac{1}{2}$mnC.$\frac{1}{4}$mnD.$\sqrt{mn}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,P为矩形ABCD内一点,求证:S△PBC=S△PAC+S△PCD

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ,$\frac{AB′}{AB}$=$\frac{B′C′}{BC}$=$\frac{AC′}{AC}$=n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ=72°,n=$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,△ABC为等腰三角形,AC=BC,以边BC为直径的半圆与边AB,AC分别交于D,E两点,过点D作DF⊥AC,垂足为点F.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)若BC=9,EF=1,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在矩形ABCD中,对角线AC、BD交于点O,将△ABC沿直线AC翻折,点B落在点B′处,且AB′∥BD,连接B′D.
求证:(1)△ABO是等边三角形.
(2)B′D∥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,点B,D分别在x轴的正、负半轴上,OB=OD,以BD为对角线作?ABCD,使点A、C分别落在反比例函数y=$\frac{k}{x}$的第一、三象限的图象上,且S?ABCD=28.AB、CD分别交反比例图象于点E、F,连结EF.当四边形BEFC是平行四边形时,k的值是$\frac{14}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)完成下面的推理说明:
已知:如图,BE∥CF,BE、CF分别平分∠ABC和∠BCD.
求证:AB∥CD.
证明:∵BE、CF分别平分∠ABC和∠BCD(已知),
∴∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠BCD(角平分线的定义 ).
∵BE∥CF(已知 ),
∴∠1=∠2(两直线平行,内错角相等).
∴$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠BCD(等量代换).
∴∠ABC=∠BCD(等式的性质).
∴AB∥CD(内错角相等,两直线平行 ).
(2)说出(1)的推理中运用了哪两个互逆的真命题.

查看答案和解析>>

同步练习册答案