精英家教网 > 初中数学 > 题目详情

【题目】(阅读理解)

已知下面是按一定规律排列的一列数,且任意相邻四个数的和都相等.这列数据从前往后,从第一个数开始依次是-5,-219x,….

(理解应用)

1)求第5个数x

2)求从前往后前38个数的和;

3)若m为正整数,直接用含m的式子表示数字-2处在第几个数的位置上.

【答案】1;(2)从前往后前38个数的和是20;(3)数字-2处在第个数的位置上

【解析】

1)根据“任意相邻四个数的和都相等”列出方程,然后进一步求解即可;

(2)求出的值后,进一步观察这列数字可知它们每4个数一循环,据此进一步求解即可;

(3)结合(1)、(2)总结出这列数字的规律,然后进一步归纳即可.

1)由题意,得:

2)由(1)可得,这列数字为:

∵任意相邻四个数的和都相等,

∴这列数字每4个数一循环,

即从前往后前38个数的和是20

3)结合(1)、(2)可知:

该列数字为:

∴数字所在的位置为第二个数、第六个数、第十个数……

∴数字-2处在第个数的位置上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O,A为顶点作菱形OABC,使B,C点都在第一象限内,且AO=AC,又以P(0,4)为圆心,PC为半径的圆恰好与OC所在的直线相切,则t等于(   )

A. 2-1 B. 2+1 C. 5 D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC=12厘米,∠B=CBC=8厘米,点DAB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为_____厘米/秒,△BPD与△CQP全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在三角形ABC中,DBC上一点,且∠CDA=∠CAB.(注:三角形内角和等于180°)

1)求证:∠CDA=∠DAB+DBA

2)如图2MN是经过点D的一条直线,若直线MNAC边于点E,且∠CDE=∠CAD.求证:∠AED+EAB180°;

3)将图2中的直线MN绕点D旋转,使它与射线AB交于点P(点P不与点AB重合).在图3中画出直线MN,并用等式表示∠CAD,∠BDP,∠BPD这三个角之间的数量关系,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在四边形ABCD中,点EAD上,∠BCE=ACD=90°,BAC=DBC=CE

(1)求证:AC=CD

(2)若∠ACB=30°,D=45°,求∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上有AB两点,分别表示﹣4020,甲、乙两只蚂蚁分别从AB两点同时出发,甲沿线段AB方向以3个单位长度/秒的速度向右运动,甲到达点B处时运动停止;乙沿线段BA方向以5个单位长度/秒的速度向左运动.

1)求甲、乙第一次相遇点所表示的数.

2)求经过多少秒时,甲、乙相距28个单位长度?

3)若乙到达A点后立刻掉头追赶甲(速度保持不变),则在甲到达B点前,甲、乙是否还能再次相遇?若能,求出相遇点所表示的数;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)x2+8x-20=0(用配方法);

(2)x2-2x-3=0;

(3)(x-1)(x+2)=4(x-1);

(4)3x2-6x=1(用公式法).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,

(1)设∠AED的度数为x,∠ADE的度数为y,那么∠1、∠2的度数分别是多少?(用含有xy的代数式表示)

(2)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:

根据图表解答下列问题:

1)请将条形统计图补充完整;

2)在扇形统计图样中,产生的有害垃圾C所对应的圆心角 度;

3)调查发现,在可回收物中塑料类垃圾占13%,每回收1吨塑料类垃圾可获得0.5吨二级原料.假设该城市每月产生的生活垃圾为1000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?

查看答案和解析>>

同步练习册答案