【题目】如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若∠ACB=30°,∠D=45°,求∠AEC的度数.
【答案】(1)证明见解析;(2)75°
【解析】
试题(1)根据同角的余角相等可得到∠ACB=∠DCE,结合条件可得到∠BAC=∠D,再加上BC=CE,可证ΔACB≌ΔDCE,从而求得结论;
(2)由(1)知∠DCE=∠ACB=30°,又∠D=45°,故∠AEC=75°.
试题解析:∵∠BCE=∠ACD=90°,
∴∠ACB+∠ACE=∠ACE+∠DCE,
∴∠ACB=∠DCE,
在△ABC和△DEC中,
,
∴△ABC≌△DEC(AAS),
∴AC=CD;
(2)∵∠ACD=90°,∠ACB=30°,
∴∠DCE=∠ACB=30°
∵∠D=45°,
∴∠AEC=∠D +∠DCE=45°+30°=75°.
科目:初中数学 来源: 题型:
【题目】如图,有、、三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )
A.在∠A、∠B两内角平分线的交点处
B.在AC、BC两边垂直平分线的交点处
C.在AC、BC两边高线的交点处
D.在AC、BC两边中线的交点处
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,AD平分∠BAC,BD=CD
(1)求证:BE=CF;
(2)已知AC=10,DE=4,BE=2,求△AEC的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.
某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8
(1)请通过计算说明A站是哪一站?
(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)
已知下面是按一定规律排列的一列数,且任意相邻四个数的和都相等.这列数据从前往后,从第一个数开始依次是-5,-2,1,9,x,….
(理解应用)
(1)求第5个数x;
(2)求从前往后前38个数的和;
(3)若m为正整数,直接用含m的式子表示数字-2处在第几个数的位置上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.
(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;
(2)请用两种不同的方法求图乙中阴影部分的面积S;
(3)观察图乙,并结合(2)中的结论,写出下列三个整式:,,ab之间的等式;
(4)根据(3)中的等量关系,解决如下问题:当,时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上的点表示的数是5,点表示的数是,这两点都以每秒一个单位长度的速度在数轴上各自朝某个方向运动,且两点同时开始运动:
(1)若点向右运动,则两秒后点表示的数是_______;(直接写结果)
(2)若点向左运动,点向右运动,当这两点相遇时点表示的数是多少?
(3)同时运动3秒后,这两点相距多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AC=BC=5,AB=6,点E是线段AB上的动点(不与端点重合),点F是线段AC上的动点,连接CE、EF,若在点E、点F的运动过程中,始终保证∠CEF=∠B.当以点C为圆心,以CF为半径的圆与AB相切时,则BE的长为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com