【题目】在△ABC中,AB=AC,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F.
(1)证明:DE=DF;
(2)只添加一个条件,使四边形EDFA是正方形.并证明结论.
【答案】(1)证明见解析;(2)∠A=90°,证明见解析.
【解析】试题分析:(1)要证DE=DF,就要证△DEB≌△DFC,根据已知条件可达到目的;
(2)解决此题的关键是先假设四边形EDFA是正方形,根据其判定即可添加一个条件.
试题解析:(1) ∵AB=AC,∠B=∠C ,
∵DE⊥ AB,DF⊥ AC ,
∴∠DEB=∠DFC= 90°,
∵D是BC的中点,
∴BD=DC ,
∴△BDE≌△CDF ,
∴DE=DF;
(2)∠A=90°,
∵DE⊥ AB,DF⊥ AC ,
∴∠DEB=∠DFC= 90° ,
又∵∠A=90°,
∴∠DEB=∠DFC=∠A=90°,
∴四边形AEDF是矩形,
又∵DE=DF,
∴矩形AEDF是正方形.
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为 ;
(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;
(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点O为坐标原点,点A(3a,2a)在第一象限,过点A向x轴作垂线,垂足为点B,连接OA,S△AOB=12,点M从O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.
(1)求a的值;
(2)当0<t<2时,
①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;
②试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由。
(3)当OM=ON时,请求出t的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一段6000米的道路由甲、乙两个工程队负责完成,已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.
(1)求甲、乙两工程队每天各完成多少米?
(2)如果甲工程队每天需工程费700元,乙工程队每天需工程费500元,甲工程队单独施工4天后由甲乙两个工程队共同完成余下的工程,则完成此项工程共需要多少费用?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出980台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1254台.在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为 a 的正方形 ABCD 中, M 是边 AD 上一动点(点 M 与点 A 、 D 不重合), N 是 CD 的中点,且CBMNMB ,则 tan ABM (___________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是【 】
(A)汽车在高速公路上的行驶速度为100km/h
(B)乡村公路总长为90km
(C)汽车在乡村公路上的行驶速度为60km/h
(D)该记者在出发后4.5h到达采访地
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.
对于两人的观点,下列说法正确的是( )
A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com