【题目】如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=6,BE=2,求四边形ABFC的面积.
【答案】(1)证明见解析;(2)16.
【解析】
(1)根据圆周角定理得到∠AEB=90°,根据线段垂直平分线的性质、菱形的判定定理证明结论;
(2)根据菱形的性质求出CE,根据切割线定理求出CD,根据勾股定理、菱形的面积公式计算,得到答案.
(1)证明:∵AB是圆的直径,
∴∠AEB=90°,
∵EF=AE,
∴CB是线段AF的垂直平分线,
∴BA=BF,CA=CF,
∵AB=AC,
∴BA=BF=CA=CF,
∴四边形ABFC是菱形;
(2)解:∵四边形ABFC是菱形,
∴CE=BE=2,
由切割线定理得,CDCA=CECB,即CD(CD+6)=2×4,
解得,CD1=2,CD2=-8(舍去)
∴AC=8,
由勾股定理得,AE==2,
∴AF=4,
则四边形ABFC的面积=×4×4=16.
科目:初中数学 来源: 题型:
【题目】甲杯中盛有m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯中倒出a毫升到乙杯里(0<a<m),搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )
A. 甲杯中混入的蓝墨水比乙杯中混入的红墨水少
B. 甲杯中混入的蓝墨水比乙杯中混入的红墨水多
C. 甲杯中混入的蓝墨水和乙杯中混入的红墨水相同
D. 甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在长方形ABCD中,AB=6厘米,BC=12厘米,点P沿AB边从点A开始向点B以1厘米/秒的速度移动,点Q沿BC从点B开始向点C以2厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6).
(1)当PB=2厘米时,求点P移动多少秒?
(2)t为何值时,△PBQ为等腰直角三角形?
(3)求四边形PBQD的面积,并探究一个与计算结果有关的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与直线AB交于A(-4,-4),B(0,4)两点,直线AC:y=-x-6交y轴与点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=-x2+bx+c的表达式;
(2)连接GB、EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH、HF,当点E运动到什么位置时,以A、E、F、H为顶点的四边形是矩形?求出此时点E、H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系中有两点A(0,1),B(,0),动点P在线段AB上运动,过点P作y轴的垂线,垂足为点M,作x轴的垂线,垂足为点N,连接MN,则线段MN的最小值为( )
A. 1B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,,直线与轴和轴分别交于点,,若抛物线与直线有两个不同的交点,其中一个交点在线段上(包含,两个端点),另一个交点在线段上(包含,两个端点),则的取值范围是
A. B. 或C. D. 或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.
(1)求证:四边形ABCD是正方形;
(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.
(3)若EG=4,GF=6,BM=3,求AG、MN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com