精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为(  )

A. 6 B. 5 C. 4 D. 3

【答案】B

【解析】

根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可.

∵关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,

∴△=,解得:

又∵m为正整数,

m=123,

(1)当m=1时,原方程为x2+2x-1=0,此时方程的两根均不为整数,故m=1不符合要求;

(2)当m=2时,原方程为x2+2x=0,此时方程的两根分别为0-2,符合题中要求;

(3)当m=3时,原方程为x2+2x+1=0,此时方程的两根都为1,符合题中要求;

m=2m=3符合题意,

m的所有符合题意的正整数取值的和为:2+3=5.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣a2关于y轴对称且有最小值﹣1.

(1)求抛物线C1的解析式;

(2)在图1中抛物线C1顶点为A,将抛物线C1 B旋转180°后得到抛物线C2,直线y=kx﹣2k+4总经过一定点M,若过定点M的直线与抛物线C2只有一个公共点,求直线l的解析式.

(3)如图2,先将抛物线 C1向上平移使其顶点在原点O,再将其顶点沿直线y=x平移得到抛物线C3,设抛物线C3与直线y=x交于C、D两点,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).

(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P

(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;

(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数yx2+bx+c的图象与x轴交于AB两点,与y轴交于点COBOC.点D在函数图象上,CDx轴,且CD=4,直线1是抛物线的对称轴,E是抛物线的顶点.

(1)求bc的值;

(2)如图1,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;

(3)如图2,动点P在线段OB上,过点Px轴的垂线分别与BC交于点M,与抛物线交于点N.抛物线上有一点Q,使得△PQN与△APM的面积相等,请求出点Q到直线PN的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.

(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;

(Ⅱ)求两次取出的小球标号相同的概率;

(Ⅲ)求两次取出的小球标号的和大于6的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2

(1)求BE的长;

(2)求四边形DEBC的面积.

(注意:本题中的计算过程和结果均保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在反比例函数y(x0)的图象上,点B在反比例函数y(x0)的图象上,ABx轴,BCx轴,垂足为C,连接AC,若△ABC的面积为2,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.

(1)求AD的长.

(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当DPF为等腰三角形时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借一段墙体(墙体的最大可用长度a=10m),设AB的长为xm,所围的花圃面积为ym2,则y的最大值是__________

查看答案和解析>>

同步练习册答案