12£®Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=ax2+bx-4£¨a¡Ù0£©µÄͼÏóÓëxÖá½»ÓÚA£¬BÁ½µã£¨µãAÔÚµãB×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¬µãAµÄ×ø±êΪ£¨-2£¬0£©£¬ÇÒµ±x=-1ºÍx=3ʱ£¬¶þ´Îº¯ÊýµÄÖµyÏàµÈ£¬Ö±ÏßAD½»Å×ÎïÏßÓÚµãD£¨2£¬m£©£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ±í´ïʽ£»
£¨2£©µãPÊÇÏß¶ÎABÉϵÄÒ»¶¯µã£¬£¨µãPºÍµãA£¬B²»Öغϣ©£¬¹ýµãP×÷PE¡ÎAD£¬½»BDÓÚE£¬Á¬½ÓDP£¬µ±¡÷DPEµÄÃæ»ý×î´óʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©ÈôÖ±ÏßAD ÓëyÖá½»ÓÚµãG£¬µãMÊÇÅ×ÎïÏß¶Ô³ÆÖálÉϵ͝µã£¬µãNÊÇxÖáÉϵ͝µã£¬µ±ËıßÐÎCMNGµÄÖܳ¤×îСʱ£¬Çó³öÖܳ¤µÄ×îСֵºÍµãM£¬µãNµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾Ýµ±x=-1ºÍx=3ʱ£¬¶þ´Îº¯ÊýµÄÖµyÏàµÈ£¬Çó³ö¶Ô³ÆÖᣬÓɵãAµÄ×ø±êΪ£¨-2£¬0£©£¬µÃµ½Bµã×ø±êΪ£¨4£¬0£©£¬½«A£¨-2£¬0£©£¬B£¨4£¬0£©·Ö±ð´úÈë½âÎöʽy=ax2+bx-4¼´¿É£»
£¨2£©Èçͼ1£¬×÷EF¡ÍxÖáÓÚF£¬Çó³öAD½âÎöʽ£¬¿ÉµÃµ½PE½âÎöʽΪy=-x+g£¬ÉèE£¨t£¬2t-8£©£¬½«E£¨t£¬2t-8£©´úÈëy=-x+gµÃ2t-8=-t+g£¬¼´g=3t-8£¬PE½âÎöʽΪy=-x+3t-8£¬Çó³öPµã×ø±êΪ£¨3t-8£¬0£©£¬ÁгöS¡÷DPE=[4-£¨3t-8£©][4-8+2t]=-6t2+36t-48¼´¿ÉÇó½â£»
£¨3£©¶þ´Îº¯Êý¶Ô³ÆÖáΪx=1£¬ÔòC£¨0£¬-4£©¹ØÓÚx=1µÄ¶Ô³ÆµãΪC¡ä£¨2£¬-4£©£¬G£¨0£¬-2£©¹ØÓÚxÖáµÄ¶Ô³ÆµãΪG¡ä£¨0£¬2£©£®Á¬½ÓC¡äG¡ä£¬Óël½»µã¼´ÎªM£¬ÓëxÖá½»µã¼´ÎªN£®´ËʱËıßÐÎCMNGµÄÖܳ¤×îСֵ=C¡äG¡ä£®Çó³öC¡äG¡ä½âÎöʽ¼´¿É½â´ð£®

½â´ð ½â£º£¨1£©µ±x=-1ºÍx=3ʱ£¬¶þ´Îº¯ÊýµÄÖµyÏàµÈ¿ÉÖª¶Ô³ÆÖáΪx=$\frac{-1+3}{2}$=1£¬
¡ßµãAµÄ×ø±êΪ£¨-2£¬0£©£¬
¡àBµã×ø±êΪ£¨4£¬0£©£¬
½«A£¨-2£¬0£©£¬B£¨4£¬0£©·Ö±ð´úÈë½âÎöʽµÃ£¬
$\left\{\begin{array}{l}4a-2b-4=0\\ 16a+4b-4=0\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}a=\frac{1}{2}\\ b=-1\end{array}\right.$£®
¶þ´Îº¯Êý½âÎöʽΪy=$\frac{1}{2}$x2-x-4£®
£¨2£©Èçͼ1£¬×÷EF¡ÍxÖáÓÚF£¬½«µãD£¨2£¬m£©´úÈëy=$\frac{1}{2}$x2-x-4µÃ£¬m=-4£¬
ÔòDµã×ø±êΪ£¨2£¬-4£©£¬
ÉèAD½âÎöʽΪy=kx+b£¬
°ÑA£¨-2£¬0£©£¬D£¨2£¬-4£©·Ö±ð´úÈë½âÎöʽµÃ£¬$\left\{\begin{array}{l}-2k+b=0\\ 2k+b=-4\end{array}\right.$£¬½âµÃ£¬$\left\{\begin{array}{l}b=-2\\ k=-1\end{array}\right.$£¬
º¯ÊýAD½âÎöʽΪy=-x-2£®
¡ßPE¡ÎAD£¬
¡àPE½âÎöʽΪy=-x+g£®
ÉèBD½âÎöʽΪy=mx+n£¬
°ÑB£¨4£¬0£©£¬D£¨2£¬-4£©·Ö±ð´úÈë½âÎöʽµÃ£¬$\left\{\begin{array}{l}4m+n=0\\ 2m+n=-4\end{array}\right.$£¬½âµÃ£¬$\left\{\begin{array}{l}m=2\\ n=-8\end{array}\right.$£¬
º¯ÊýBD½âÎöʽΪy=2x-8£®
Ôò¿ÉÉèE£¨t£¬2t-8£©£¬½«E£¨t£¬2t-8£©´úÈëy=-x+gµÃ2t-8=-t+g£¬¼´g=3t-8£¬
PE½âÎöʽΪy=-x+3t-8£¬
µ±y=0ʱ£¬x=3t-8£¬ÔòPµã×ø±êΪ£¨3t-8£¬0£©£¬
S¡÷DPE=[4-£¨3t-8£©][4-8+2t]=-6t2+36t-48£¬
µ±t=-$\frac{36}{2¡Á£¨-6£©}$=3ʱ£¬S¡÷DPEµÄÃæ»ý×î´ó£¬
´Ëʱ£¬3t-8=3¡Á3-8=1£¬
µÃP£¨1£¬0£©£®
£¨3£©Èçͼ2£¬¶þ´Îº¯Êý¶Ô³ÆÖáΪx=1£¬ÔòC£¨0£¬-4£©¹ØÓÚx=1µÄ¶Ô³ÆµãΪC¡ä£¨2£¬-4£©£¬G£¨0£¬-2£©¹ØÓÚxÖáµÄ¶Ô³ÆµãΪG¡ä£¨0£¬2£©£®
Á¬½ÓC¡äG¡ä£¬Óël½»µã¼´ÎªM£¬ÓëxÖá½»µã¼´ÎªN£®
´ËʱËıßÐÎCMNGµÄÖܳ¤×îСֵ=C¡äG¡ä£®
ÉèC¡äG¡äµÄ½âÎöʽΪy=zx+s£¬
½«C¡ä£¨2£¬-4£©£¬G¡ä£¨0£¬2£©·Ö±ð´úÈë½âÎöʽµÃ£¬$\left\{\begin{array}{l}2z+s=-4\\ s=2\end{array}\right.$£¬
½âµÃ£¬$\left\{\begin{array}{l}z=-3\\ s=2\end{array}\right.$£¬
C¡äG¡äµÄ½âÎöʽΪy=-3x+2£¬
µ±x=1ʱ£¬y=-1£¬M£¨1£¬-1£©£¬
µ±y=0ʱ£¬x=$\frac{2}{3}$£¬N£¨$\frac{2}{3}$£¬0£©£®
ËıßÐÎCMNGµÄÖܳ¤×îСֵ=C¡äG¡ä+CG=$\sqrt{£¨0-2£©^{2}+£¨2+4£©^{2}}$+2=2$\sqrt{10}$+2£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ¡¢¶þ´Îº¯Êý½âÎöʽ£¬¶þ´Îº¯ÊýÇó×îÖµ¡¢Öá¶Ô³Æ×î¶Ì·¾¶ÎÊÌ⣬ÄѶȽϴó£¬ÖµµÃ¹Ø×¢£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎOABCÖУ¬OA¡ÎCB£¬A¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪA£¨15£¬0£©£¬B£¨10£¬12£©£¬¶¯µãP¡¢Q·Ö±ð´ÓO¡¢B³ö·¢£¬µãPÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØOAÏòÖÕµãAÔ˶¯£¬µãQÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØBCÏòÖÕµãCÔ˶¯£¬µ±µãPÍ£Ö¹Ô˶¯Ê±£¬µãQҲͬʱֹͣÔ˶¯£®Ïß¶ÎOB¡¢PQÏཻÓÚµãD£¬¹ýµãD×÷DE¡ÎOA£¬½»ABÓÚµãE£¬Á¬½ÓQE²¢ÑÓ³¤£¬½»xÖáÓÚµãF£®É趯µãP¡¢QµÄÔ˶¯Ê±¼äΪt£¨µ¥Î»£ºÃ룩
£¨1£©µ±tΪºÎֵʱ£¬ËıßÐÎPABQÊǵÈÑüÌÝÐΣ¿
£¨2£©µ±t=2Ãëʱ£¬ÇóÌÝÐÎOFBCµÄÃæ»ý£»
£¨3£©ÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷PQFÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬ºÓÁ÷Á½°¶a¡¢bƽÐУ¬C¡¢DÊǺӰ¶aÉϼä¸ô50Ã×µÄÁ½¸ùµçÏ߸ˣ¬Ä³ÈËÔÚºÓ°¶bÉϵÄA´¦²âµÃ¡ÏDAE=30¡ã£¬È»ºóÑØºÓ°¶×ßÁË100Ã×µ½´ïB´¦£¬²âµÃ¡ÏCBF=60¡ã£¬ÔòºÓÁ÷µÄ¿í¶ÈCFµÄֵΪ43m£¨½á¹û¾«È·µ½¸ö룬$\sqrt{2}$¡Ö1.414£¬$\sqrt{3}$¡Ö1.732£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èçͼ£¬EÊÇÕý·½ÐÎABCDµÄ±ßCDµÄÖе㣬AEµÄ´¹Ö±Æ½·ÖÏß·Ö±ð½»AE¡¢BCÓÚH¡¢G£¬ÈôCG=7£¬ÔòÕý·½ÐÎABCDµÄÃæ»ýµÈÓÚ64£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª£ºÕý·½ÐÎABCDÖУ¬µãEÊǶԽÇÏßACÉÏÒ»µã£¬EF¡ÍBCÓÚF£¬EG¡ÍCDÓÚµãG
£¨1£©Èçͼ1£¬ÊÔÈ·¶¨AEÓëDGµÄ¹ØÏµAE=$\sqrt{2}$DG£®
£¨2£©½«ËıßÐÎEFCGÈÆµãC˳ʱÕëÐýתһ¶¨½Ç¶È¦Á£®
¢ÙÈçͼ2£¬AEÓëDGµÄÊýÁ¿¹ØÏµÓ루1£©ÖбȽÏÊÇ·ñ·¢Éú±ä»¯£¿ÊÔ˵Ã÷ÀíÓÉ£®
¢Úµ±0¡ã£¼¦Á£¼360¡ãʱ£¬Ö±ÏßBEÓëÖ±ÏßCD½»ÓÚµãM£¬ÈôÖ»¿¼ÂÇÏß¶ÎBEÓëÏß¶ÎCDÏཻºÍBEµÄÑÓ³¤ÏßÓëDCµÄÑÓ³¤ÏßÏཻµÄÇé¿ö£¬Ôòµ±¦ÁΪ¶àÉÙ¶ÈʱS¡÷BNC=S¡÷DME£¨Ö±½Óд³ö´ð°¸£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®´óÃ÷Òò¼±ÊÂÔÚÔËÐÐÖеÄ×Ô¶¯·öÌÝÉÏÐÐ×ßÈ¥¶þÂ¥£¨Èçͼ1£©£¬Í¼2ÖÐÏß¶ÎOA¡¢OB·Ö±ð±íʾ´óÃ÷ÔÚÔËÐÐÖеÄ×Ô¶¯·öÌÝÉÏÐÐ×ßÈ¥¶þÂ¥ºÍ¾²Ö¹Õ¾ÔÚÔËÐÐÖеÄ×Ô¶¯·öÌÝÉÏÈ¥¶þ¥ʱ£¬¾à×Ô¶¯·öÌÝÆðµãµÄ¾àÀëÓëʱ¼äÖ®¼äµÄ¹ØÏµ£®ÏÂÃæËĸöͼÖУ¬ÐéÏßOCÄÜ´óÖ±íʾ´óÃ÷ÔÚÍ£Ö¹ÔËÐУ¨¼´¾²Ö¹£©µÄ×Ô¶¯·öÌÝÉÏÐÐ×ßÈ¥¶þ¥ʱ£¬¾à×Ô¶¯·öÌÝÆðµãµÄ¾àÀëÓëʱ¼ä¹ØÏµµÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ò»¸ö²»Í¸Ã÷µÄºÐ×ÓÀïÓÐ2¸ö»ÆÉ«Ð¡ÇòºÍa¸ö°×ɫСÇò£¬´ÓÖÐËæ»úȡһ¸öСÇò£¬È¡³ö»ÆÇò¸ÅÂÊΪ20%£¬ÔòÍÆËãaµÄֵΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®½â·½³Ì£º2£¨2x-1£©2-14=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®µ±a=-1£¬b=$\frac{2}{3}$ʱ£¬Çó·Öʽ$\frac{a-b}{4a+3b}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸