分析 连接AG、EG,设CE=x,则AB=BC=2x,BG=2x-7,根据线段垂直平分线的性质得出AG=EG,根据勾股定理得出方程,解方程即可求出边长,即可得出面积.
解答 解:连接AG、EG,如图所示:
∵四边形ABCD是正方形,
∴AB=BC=CD,
∵E是正方形ABCD的边CD的中点,
∴CE=$\frac{1}{2}$CD,
设CE=x,则AB=BC=2x,BG=2x-7,
∵AE的垂直平分线分别交AE、BC于H、G,
∴AG=EG,
在Rt△AGH和Rt△EGH中,
根据勾股定理得:AG2=AB2+BG2,EG2=CE2+CG2,
∴(2x)2+(2x-7)2=x2+72,
解得:x=4,
∴AB=8,
∴正方形ABCD的面积=AB2=82=64.
故答案为:64.
点评 本题考查了正方形的性质、线段垂直平分线的性质以及勾股定理的运用;根据勾股定理列出方程是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 甲 | B. | 乙 | C. | 甲和乙一样 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com