【题目】如图,已知点A是双曲线在第一象限的分支上的一个动点,连结AO并延长交另一分
支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线(k<0)上运动,则k的值是________.
【答案】-3.
【解析】连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=1,可得FCOF=3.设点C坐标为(x,y),从而有FCOF=-xy=-3,即k=xy=-3.
解:∵双曲线y=关于原点对称,
∴点A与点B关于原点对称.
∴OA=OB.
连接OC,如图所示.
∵△ABC是等边三角形,OA=OB,
∴OC⊥AB.∠BAC=60°.
∴tan∠OAC==.
∴OC=OA.
过点A作AE⊥y轴,垂足为E,
过点C作CF⊥y轴,垂足为F,
∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°-∠FOC=∠OCF.
∴△AEO∽△OFC.
∴.
∵OC=OA,
∴OF=AE,FC=EO.
设点A坐标为(a,b),
∵点A在第一象限,
∴AE=a,OE=b.
∴OF=AE=a,FC=EO=b.
∵点A在双曲线y=上,∴ab=1.
∴FCOF=ba=3ab=6
设点C坐标为(x,y),
∵点C在第四象限,
∴FC=x,OF=-y.
∴FCOF=x(-y)=-xy=3.
∴xy=-3.
∵点C在双曲线y=上,
∴k=xy=-3.
故答案为:-3.
“点睛”本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2.
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式从左边到右边的变形是因式分解的是( )
A.-18x4y3=-6x2y2·3x2yB.(a+2)(a-2)=a2-4
C.x2+2x+1=x(x+2)+1D.a2-8a+16=(a-4)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知 为 上的一点,按下列要求进行作图.
(1)作 的平分线 .
(2)在 上取一点 ,使得 .
(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边 上取一点 ,使得 ,这时他发现 与 之间存在一定的数量关系,请写出 与 的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的中线,E、F分别是AD及AD延长线上的点,且DE=DF,连接BF、CE.则下列结论中正确的有( )
①△BDF≌△CDE;②CE=BF;③ABD和△ACD的面积相等;④BF∥CE.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知顶点为A(2,﹣1)的抛物线与y轴交于点B,与x轴交于C、D两点,点C坐标(1,0);
(1)求这条抛物线的表达式;
(2)连接AB、BD、DA,求的大小;
(3)点P在x轴正半轴上位于点D的右侧,如果∠APB=45°,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com