精英家教网 > 初中数学 > 题目详情

【题目】如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.

(1)ODOE的位置关系是______;(2)EOC的余角是_______ .

【答案】互相垂直 COD或∠BOD

【解析】

(1)根据平角和角平分线的定义即可求出∠EOD的度数,即可得答案;(2)根据互为余角的和为90°找出即可.

(1)OD平分∠BOC,OE平分∠AOC,

∴∠EOC=AOC,COD=COB,

∵∠AOC+BOC=180°,

∴∠EOC+COD=90°,

ODOE的位置关系是互相垂直.

(2)∵∠COD=DOB,EOC+COD=90°,

∴∠EOC的余角是∠COD或∠DOB,

故答案为:(1)互相垂直;(2)COD或∠DOB,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.

(1)求证:四边形OCED是菱形.

(2)若AB=6,BC=8,求四边形OCED的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点D在边BCB、C不重合,四边形ADEF为正方形,过点F,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论::2;

其中正确的结论的个数是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

(1)数轴上表示41的两点之间的距离为|4﹣1|=   ;表示5和﹣2两点之间的距离为|5﹣(﹣2)|=|5+2|=   ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=   

(2)若数轴上表示数a的点位于﹣42之间,求|a+4|+|a﹣2|的值;

(3)当a=   时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式abab+1的成立的一对有理数ab为“共生有理数对”,记为(ab),如:数对(2,),(5,),都是“共生有理数对”.

(1)数对(﹣2,1),(3,)中是“共生有理数对”的是   

(2)若(mn)是“共生有理数对”,则(﹣n,﹣m   “共生有理数对”(填“是”或“不是”);

(3)请再写出一对符合条件的“共生有理数对”为   ;(注意:不能与题目中已有的“共生有理数对”重复)

(4)若(a,3)是“共生有理数对”,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示: (1)按下列语句画出图形:

①延长ACD,使CD=AC;②反向延长CBE,使CE=BC;③连接DE.

(2)度量其中的线段和角,你有什么发现?

(3)试判断图中两个三角形的面积是否相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.

(1)求m的值;
(2)求抛物线E2所表示的二次函数的表达式;
(3)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示:

(1)折叠数轴,若1表示的点与-1表示的点重合,则-2表示的点与数 表示的点重合;

(2)折叠数轴,若-1表示的点与5表示的点重合,则4表示的点与 表示的点重合;

(3)已知数轴上点A表示的数是-1,点B表示的数是2,若点A以每秒1个单位长度的速度在数轴上移动,点B以每秒2个单位长度的速度在数轴上移动,且点A始终在点B的左侧,求经过几秒时,A、B两点的距离为6个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了数轴后,小亮决定对数轴进行变化应用:

(1)应用一:已知点A在数轴上表示为,数轴上任意一点B表示的数为,则AB两点的距离可以表示为 ;应用这个知识,请写出当 时,有最小值为 .

(2)应用二:从数轴上取下一个单位长度的线段,第一次剪掉原长的,第二次剪掉剩下的,依次类推,每次都剪掉剩下的,则剪掉5次后剩下线段长度为 ;应用这个原理,请计算:.

(3)应用三:如图,将一根拉直的细线看作数轴,一个三边长分别为的三角形的顶点与原点重合,边在数轴正半轴上,将数轴正半轴的线沿的顺序依次缠绕在三角形的边上,负半轴的线沿的顺序依次缠绕在三角形的边上.

①如果正半轴的线缠绕了5圈,负半轴的线缠绕了3圈,求绕在点上的所有数之和;

②如果正半轴的线不变,将负半轴的线拉长一倍,即原线上的点的位置对应着拉长后的数,并将三角形向正半轴平移一个单位后再开始绕,求绕在点且绝对值不超过100的所有数之和.

查看答案和解析>>

同步练习册答案