精英家教网 > 初中数学 > 题目详情

【题目】特色江苏,美好生活,第十届江苏省园艺博览会在扬州举行.圆圆和满满同学分析网上关于园博会的信息,发现最具特色的场馆有:扬州园,苏州园,盐城园,无锡园.他们准备周日下午去参观游览,各自在这四个园中任选一个,每个园被选中的可能性相同.

1)圆圆同学在四个备选园中选中扬州园的概率是 .

2)用树状图或列表法求出圆圆和满满他们选中同一个园参观的概率是多少?

【答案】1;(2

【解析】

1)直接根据概率公式进行求解即可.

2)列举出所有情况,看圆圆和满满他们选中同一个园参参观的情况占总情况的多少即可.

解:(1)(1)圆圆同学在四个备选园中选中扬州园的概率是

2)画树状图分析如下:

扬州园A,苏州园B,盐城园C,无锡园D.

P=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角是45°,沿斜坡走米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为12.则小明从点A走到点D的过程中,他上升的高度为____米;大树BC的高度为____米(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角角坐标系中,已知抛物线轴交于两点.

(1)求抛物线的函数表达式;

(2)如图轴与抛物线相交于点,点是直线下方抛物线上的动点,过点且与轴平行的直线与,分别交于点试探究当点运动到何处时,线段的最长,求点的坐标;

(3)若点为抛物线的顶点,点是该抛物线上的一点,在轴、轴上分别找点,使四边形的周长最小,请求出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线31交于点A13),过点Ax轴的平行线,分别交两条抛物线于点BC.则以下结沦:①无论x取何值,的值总是正数;②2a1;③当x0时,4;④2AB3AC.其中正确结论是______.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,经过原点O的抛物线yax2bxa0)与x轴交于另一点A30),在第一象限内与直线yx交于点B4t).

1)求这条抛物线的表达式;

2)在直线OB下方的抛物线上有一点C,满足以BOC为顶点的三角形的面积最大,求点C的坐标;

3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(操作体验)

如图①,已知线段AB和直线l,用直尺和圆规在l作出所有的点P,使得∠APB30°

如图②,小明的作图方法如下:

第一步:分别以点AB为圆心AB长为半径作弧,两弧在AB上方交于点O

第二步:连接OAOB

第三步:以O为圆心,OA长为半径作⊙O,交lP1P2

所以图中P1P2即为所求的点.

1 在图②中,连接P1AP1 B,说明∠A P1B30°

(方法迁移)

2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC45°

(不写作法,保留作图痕迹)

(深入探究)

3)已知矩形ABCDBC2ABmPAD边上的点,若满足∠BPC45°的点P恰有两个,则m的取值范围为

4)已知矩形ABCDAB3BC2P为矩形ABCD内一点,且∠BPC135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=kx+2x轴、y轴分别交于点A-10)和点B,与反比例函数y=的图象在第一象限内交于点C1n).

1)求k的值;

2)求反比例函数的解析式;

3)过x轴上的点Da0)作平行于y轴的直线la1),分别与直线AB和双曲线y=交于点PQ,且PQ=2QD,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗。我市某食品厂为了解市民对去年销量较好的肉馅粽(咸)、豆沙馅粽(甜)、红枣馅粽(甜)、蛋黄馅粽(咸)(以下分别用表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)。请根据以上信息回答:

1)本次参加抽样调查的居民有多少人?

2)将两幅不完整的图补充完整;

3)若居民区有7000人,请估计爱吃A粽的人数;

4)若有外型完全相同的粽各一个,煮熟后,小王吃了两个。用列表或画树状图的方法,求他吃到的两个粽子都是甜味的概率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下表所示,有AB两组数:

1个数

2个数

3个数

4个数

……

9个数

……

n个数

A

6

5

2

……

58

……

n22n5

B

1

4

7

10

……

25

……

1A组第4个数是   

2)用含n的代数式表示B组第n个数是   ,并简述理由;

3)在这两组数中,是否存在同一列上的两个数相等,请说明.

查看答案和解析>>

同步练习册答案