【题目】如图,在平面直角角坐标系中,已知抛物线与轴交于,两点.
(1)求抛物线的函数表达式;
(2)如图,轴与抛物线相交于点,点是直线下方抛物线上的动点,过点且与轴平行的直线与,分别交于点试探究当点运动到何处时,线段的最长,求点的坐标;
(3)若点为抛物线的顶点,点是该抛物线上的一点,在轴、轴上分别找点,使四边形的周长最小,请求出点的坐标.
【答案】(1)y=x2-4x-5;(2)H(,);(3)P、Q的坐标分别为P(,0),Q(0, ).
【解析】
(1)待定系数法,将点A、B代入抛物线解析式即可求出解析式.
(2)设点H、F的坐标,表示线段HF,将得到的关系式配方,配成顶点式就可以求出点H的坐标.
(3)利用对称性找到点P、Q的位置,进而求出点P、Q的坐标.
解:(1)由已知得
把代入得,
解得
∴二次函数的表达式为y=x2-4x-5.
(2)设
设直线的表达式为,解得
直线的表达式为
(3)如图,分别作关于轴,轴对称的点,分别交延长线于点
点为顶点
点关于轴的对称点的坐标为
∵
点关于轴的对称点的坐标为,
设直线的表达式为,
解得,
直线的表达式为
易知图中点即为符合条件的点
∴P、Q的坐标分别为P(,0),Q(0,).
科目:初中数学 来源: 题型:
【题目】如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿坡角为30°的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈,计算结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,双曲线经过矩形OABC的边BC的中点E,交AB于点D.设点B的坐标为(m,n).
(1)直接写出点E的坐标,并求出点D的坐标;(用含m,n的代数式表示)
(2)若梯形ODBC的面积为,求双曲线的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《中学生体质健康标准》规定学生体质健康等级标准为:90分及以上为优秀;80分~89分为良好;60分~79分为及格;59分及以下为不及格. 某校从九年级学生中随机抽取了的学生进行了体质测试,得分情况如下图.
(1)在抽取的学生中不及格人数所占的百分比是 ,它的圆心角度数为 度.
(2)小明按以下方法计算出抽取的学生平均得分是:. 根据所学的统计知识判断小明的计算是否正确,若不正确,请计算正确结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).
(1)求反比例函数的解析式及B点的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数与 在第一象限图象的性质,经历了如下探究过程:
操作猜想:
(1)如图①,当,时,在轴的正方向上取一点作轴的平行线交于点,交于点.当时,________,________,________;当时,________,________,________;当时,猜想________.
数学思考:
(2)在轴的正方向上任意取点作轴的平行线,交于点、交于点,请用含、的式子表示的值,并利用图②加以证明.
推广应用:
(3)如图③,若,,在轴的正方向上分别取点、 作轴的平行线,交于点、,交于点、,是否存在四边形是正方形?如果存在,求的长和点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“特色江苏,美好生活”,第十届江苏省园艺博览会在扬州举行.圆圆和满满同学分析网上关于园博会的信息,发现最具特色的场馆有:扬州园,苏州园,盐城园,无锡园.他们准备周日下午去参观游览,各自在这四个园中任选一个,每个园被选中的可能性相同.
(1)圆圆同学在四个备选园中选中扬州园的概率是 .
(2)用树状图或列表法求出圆圆和满满他们选中同一个园参观的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:内接于,,平分.
(1)如图,求证:为等边三角形.
(2)如图,为直径,点在上,于点,交于点,连接,将绕点逆时针旋转使点落在上的点处,求证:;
(3)如图,在(2)的条件下,与交于点与交于点,连接,若的面积,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com